6533b7ddfe1ef96bd127475c
RESEARCH PRODUCT
Sturmian words and overexponential codimension growth
Antonio GiambrunoMikhail Zaicevsubject
Applied Mathematics010102 general mathematicsNon-associative algebraSturmian word01 natural sciences010101 applied mathematicsFiltered algebraCombinatoricsBounded functionAssociative algebraDivision algebraAlgebra representationComposition algebra0101 mathematicsMathematicsdescription
Abstract Let A be a non necessarily associative algebra over a field of characteristic zero satisfying a non-trivial polynomial identity. If A is a finite dimensional algebra or an associative algebra, it is known that the sequence c n ( A ) , n = 1 , 2 , … , of codimensions of A is exponentially bounded. If A is an infinite dimensional non associative algebra such sequence can have overexponential growth. Such phenomenon is present also in the case of Lie or Jordan algebras. In all known examples the smallest overexponential growth of c n ( A ) is ( n ! ) 1 2 . Here we construct a family of algebras whose codimension sequence grows like ( n ! ) α , for any real number α with 0 α 1 .
year | journal | country | edition | language |
---|---|---|---|---|
2018-04-01 | Advances in Applied Mathematics |