6533b7ddfe1ef96bd1274aac

RESEARCH PRODUCT

Probabilistic and team PFIN-type learning: General properties

Andris Ambainis

subject

FOS: Computer and information sciencesComputer Science::Machine LearningTheoretical computer scienceComputer Networks and CommunicationsExistential quantificationStructure (category theory)DecidabilityType (model theory)Learning in the limitTheoretical Computer ScienceMachine Learning (cs.LG)Probability of successFinite limitsMathematicsOrdinalsDiscrete mathematicsHierarchybusiness.industryApplied MathematicsAlgorithmic learning theoryProbabilistic logicF.1.1 I.2.6Inductive inferenceInductive reasoningDecidabilityComputer Science - LearningTeam learningComputational Theory and MathematicsArtificial intelligencebusiness

description

We consider the probability hierarchy for Popperian FINite learning and study the general properties of this hierarchy. We prove that the probability hierarchy is decidable, i.e. there exists an algorithm that receives p_1 and p_2 and answers whether PFIN-type learning with the probability of success p_1 is equivalent to PFIN-type learning with the probability of success p_2. To prove our result, we analyze the topological structure of the probability hierarchy. We prove that it is well-ordered in descending ordering and order-equivalent to ordinal epsilon_0. This shows that the structure of the hierarchy is very complicated. Using similar methods, we also prove that, for PFIN-type learning, team learning and probabilistic learning are of the same power.

10.1016/j.jcss.2007.06.011http://dx.doi.org/10.1016/j.jcss.2007.06.011