6533b7ddfe1ef96bd127509b
RESEARCH PRODUCT
Optimisation et implémentation de méthodes bio-inspirées d'extraction de caractéristiques pour la reconnaissance d'objets visuels
Olivier Boisardsubject
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI][INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Bio-inspiréApprentissage automatiqueIntelligence artificielle[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Descripteurs[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]EmbarquéAlgorithm-architecture matching[ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM]Vision par ordinateurMachine learningRéseaux de neuronesComputer vision[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM][ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]OptimisationsFPGANeural networks[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]description
Industry has growing needs for so-called “intelligent systems”, capable of not only ac-quire data, but also to analyse it and to make decisions accordingly. Such systems areparticularly useful for video-surveillance, in which case alarms must be raised in case ofan intrusion. For cost saving and power consumption reasons, it is better to perform thatprocess as close to the sensor as possible. To address that issue, a promising approach isto use bio-inspired frameworks, which consist in applying computational biology modelsto industrial applications. The work carried out during that thesis consisted in select-ing bio-inspired feature extraction frameworks, and to optimize them with the aim toimplement them on a dedicated hardware platform, for computer vision applications.First, we propose a generic algorithm, which may be used in several use case scenarios,having an acceptable complexity and a low memory print. Then, we proposed opti-mizations for a more global framework, based on precision degradation in computations,hence easing up its implementation on embedded systems. Results suggest that whilethe framework we developed may not be as accurate as the state of the art, it is moregeneric. Furthermore, the optimizations we proposed for the more complex frameworkare fully compatible with other optimizations from the literature, and provide encourag-ing perspective for future developments. Finally, both contributions have a scope thatgoes beyond the sole frameworks that we studied, and may be used in other, more widelyused frameworks as well.
year | journal | country | edition | language |
---|---|---|---|---|
2016-11-10 |