6533b7ddfe1ef96bd1275248
RESEARCH PRODUCT
Characterization of the Clarke regularity of subanalytic sets
Moustapha SeneAbderrahim Jouranisubject
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC][ MATH ] Mathematics [math]Computer Science::Computer Science and Game Theory021103 operations researchSubanalytic setTangent coneApplied MathematicsGeneral Mathematics010102 general mathematicsTangent coneMathematical analysis0211 other engineering and technologiesSubanalytic sets02 engineering and technologyCharacterization (mathematics)16. Peace & justice01 natural sciencesMSC: Primary 49J52 46N10 58C20; Secondary 34A60Clarke regularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics[MATH]Mathematics [math]Mathematicsdescription
International audience; In this note, we will show that for a closed subanalytic subset $A \subset \mathbb{R}^n$, the Clarke tangential regularity of $A$ at $x_0 \in A$ is equivalent to the coincidence of the Clarke's tangent cone to $A$ at $x_0$ with the set \\$$\mathcal{L}(A, x_0):= \bigg\{\dot{c}_+(0) \in \mathbb{R}^n: \, c:[0,1]\longrightarrow A\;\;\mbox{\it is Lipschitz}, \, c(0)=x_0\bigg\}.$$Where $\dot{c}_+(0)$ denotes the right-strict derivative of $c$ at $0$. The results obtained are used to show that the Clarke regularity of the epigraph of a function may be characterized by a new formula of the Clarke subdifferential of that function.
year | journal | country | edition | language |
---|---|---|---|---|
2017-11-07 |