6533b7ddfe1ef96bd1275325
RESEARCH PRODUCT
Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells
Naim Akhtar KhanAnne DenysAziz Hichamisubject
MAPK/ERK pathwayCD3 ComplexDocosahexaenoic AcidsMAP Kinase Signaling SystemT-LymphocytesQD415-436Arachidonic AcidsLymphocyte Activationfatty acidsBiochemistryJurkat cellsAntibodiesJurkat Cellschemistry.chemical_compoundEndocrinologyHumansPhosphorylationProtein Kinase CProtein kinase CMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3MAP kinase kinase kinasebiologyKinaseIonomycinfood and beveragesCell BiologyCell biologyEnzyme ActivationBiochemistrychemistryMitogen-activated protein kinasebiology.proteinPhorbolTetradecanoylphorbol AcetatePhosphorylationlipids (amino acids peptides and proteins)T cell receptorMitogen-Activated Protein Kinasesdescription
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.—Denys, A., A. Hichami, and N. A. Khan. Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. J. Lipid Res. 2001. 42: 2015–2020.
year | journal | country | edition | language |
---|---|---|---|---|
2001-12-01 | Journal of Lipid Research |