6533b7ddfe1ef96bd1275366

RESEARCH PRODUCT

Seeded intermodal four-wave mixing in a highly multimode fiber

Stefan WabnitzThibaut SylvestreKatarzyna KrupaDaniele ModottoAbdelkrim BendahmaneVincent CoudercGuy MillotAlessandro Tonello

subject

Materials scienceNonlinear opticsFOS: Physical sciencesPhysics::Optics01 natural scienceslaw.invention010309 opticsFour-wave mixingOpticsfour wave mixinglaw0103 physical sciencesFiberNonlinear optics; four wave mixing; dispersion (waves)010306 general physicsOptical amplifier[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberSidebandbusiness.industryNonlinear opticsStatistical and Nonlinear PhysicsLaserNonlinear optics four wave mixing.Atomic and Molecular Physics and OpticsCore (optical fiber)businessPhysics - OpticsOptics (physics.optics)

description

International audience; We experimentally and theoretically investigate the process of seeded intermodal four-wave mixing in a graded-index multimode fiber, pumped in the normal dispersion regime. By using a fiber with a 100-mu m core diameter, we generate a parametric sideband in the C-band (1530-1565 nm), hence allowing the use of an erbium-based laser to seed the mixing process. To limit nonlinear coupling between the pump and the seed to low-order fiber modes, the waist diameter of the pump beam is properly adjusted. We observe that the superimposed seed stimulates the generation of new spectral sidebands. A detailed characterization of the spectral and spatial properties of these sidebands shows good agreement with theoretical predictions from the phase-matching conditions. Interestingly, we demonstrate that both the second-and fourth-order dispersions must be included in the phase-matching conditions to get better agreement with experimental measurements. Furthermore, temporal measurements performed with a fast photodiode reveal the generation of multiple pulse structures

10.1364/josab.35.000295http://hdl.handle.net/11379/501440