6533b7ddfe1ef96bd12754cb
RESEARCH PRODUCT
Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice
Amparo NácherAmparo Ruiz-sauriMaria ManconiInes CastangiaAnna Maria FaddaDonatella ValentiOctavio Díez-salesCarla Caddeosubject
CurcuminMaterials scienceStatic ElectricitySus scrofaBiomedical EngineeringPolyethylene glycolBiochemistryBiomaterialsMicechemistry.chemical_compoundX-Ray DiffractionScattering Small AnglePEG ratioAnimalsEdemaRegenerationParticle SizeMolecular BiologyPeroxidaseSkinMice Inbred ICRLiposomeVesicleGeneral MedicineIn vitroDisease Models AnimalchemistryBiochemistryLiposomesCurcuminBiophysicsNanoparticlesFemaleQuercetinQuercetinWound healingBiotechnologydescription
In the present work biocompatible quercetin and curcumin nanovesicles were developed as a novel approach to prevent and restore skin tissue defects on chronic cutaneous pathologies. Stable and suitable quercetin- and curcumin-loaded phospholipid vesicles, namely liposomes and penetration enhancer-containing vesicles (PEVs), were prepared. Vesicles were made from a highly biocompatible mixture of phospholipids and alternatively a natural polyphenol, quercetin or curcumin. Liposomes were obtained by adding water, while PEVs by adding polyethylene glycol 400 and Oramix®CG110 to the water phase. Transmission electron microscopy, cryogenic-transmission electron microscopy and small- and wide-angle X-ray scattering showed that vesicles were spherical, oligo- or multilamellar and small in size (112-220 nm). In vitro and in vivo tests underlined a good effectiveness of quercetin and curcumin nanovesicles in counteracting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced lesions and inflammation. Myeloperoxydase activity, used to gauge inflammation, was markedly inhibited by quercetin liposomes (59%) and curcumin liposomes and polyethylene glycol (PEG)-PEVs (∼ 68%). Histology showed that PEG-PEVs provided an extensive re-epithelization of the TPA-damaged skin, with multiple layers of thick epidermis. In conclusion, nanoentrapped polyphenols prevented the formation of skin lesions abrogating the various biochemical processes that cause epithelial loss and skin damage.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2013-07-10 | Acta Biomaterialia |