0000000000003991

AUTHOR

Carla Caddeo

0000-0003-1264-3380

Sorbitol-penetration enhancer containing vesicles loaded with baicalin for the protection and regeneration of skin injured by oxidative stress and UV radiation.

Abstract Aiming at improving the protective effects of baicalin on the skin, new highly-biocompatible penetration enhancer containing vesicles (PEVs) were developed by modifying the base formulation of transfersomes with sorbitol, thus obtaining sorbitol-PEVs. An extensive evaluation of the physico-chemical features of both transfersomes and sorbitol-PEVs was carried out. Transfersomes were mainly close-packed, multi-compartment vesicles, while sorbitol-PEVs appeared mostly as single, spherical, unilamellar vesicles. All the vesicles were small in size (∼128 nm) and negatively charged (∼−67 mV), without significant differences between the formulations. The in vitro delivery of baicalin to i…

research product

Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages

Abstract Grape extract rich in polyphenols (∼129 ± 32 mg of gallic acid equivalents per g of dry extract) was obtained from the pomaces of Cannonau grapes by homogenization in an ethanol/water mixture. The efficacy of ultrasounds in speeding up the extraction kinetics of polyphenols was demonstrated. The extract was incorporated in liposomes and PEVs (penetration enhancer containing vesicles) with Labrasol ® or Labrasol ® /ethanol. All the vesicles were spherical and predominantly unilamellar: liposomes were large (∼927 nm) and polydispersed (PI ∼0.56), while PEVs were small (∼140 nm) and fairly homogeneous (PI ∼0.3). Moreover, PEVs were able to incorporate a high amount of the extract (∼98…

research product

Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health.

Grape extract-loaded fibre-enriched vesicles, nutriosomes, were prepared by combining antioxidant extracts obtained from grape pomaces and a prebiotic, soluble fibre (Nutriose®FM06). The nutriosomes were small in size (from ∼140 to 260 nm), homogeneous (polydispersity index < 0.2) and highly negative (∼ −79 mV). The vesicles were highly stable during 12 months of storage at 25 °C. When diluted with warmed (37 °C) acidic medium (pH 1.2) of high ionic strength, the vesicles only displayed an increase of the mean diameter and a low release of the extract, which were dependent on Nutriose concentration. The formulations were highly biocompatible and able to protect intestinal cells (Caco-2) fro…

research product

Nutriosomes: Prebiotic delivery systems combining phospholipids, a soluble dextrin and curcumin to counteract intestinal oxidative stress and inflammation

Nutriosomes, new phospholipid nanovesicles specifically designed for intestinal protection were developed by simultaneously loading a water-soluble dextrin (Nutriose® FM06) and a natural antioxidant (curcumin). Nutriosomes were easily fabricated in a one-step, organic solvent-free procedure. The stability and delivery performances of the vesicles were improved by adding hydroxypropyl methylcellulose. All the vesicles were small in size (mean diameter ∼168 nm), negatively charged (zeta potential ∼-38 mV, irrespective of their composition), and self-assembled predominantly in unilamellar vesicles stabilized by the presence of Nutriose®, which was located in both the inter-lamellar and inter-v…

research product

Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries.

Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while …

research product

Exploring the co-loading of lidocaine chemical forms in surfactant/phospholipid vesicles for improved skin delivery

Abstract Objectives The present study was aimed at targeting the skin to deliver lidocaine loaded in surfactant/phospholipid vesicles tailored for improved local delivery. The influence of different formulation parameters was explored to maximise drug efficacy. Methods The vesicles were prepared using a mixture of soy lipids (Phospholipon 50) and a surfactant with penetration-enhancing properties (Oramix CG110, Labrasol, Labrafac PG or Labrafac CC), and loaded with lidocaine. The formulations were analysed in detail by cryo-TEM, SAXS, Turbiscan Lab, and tested in permeation experiments through new born pig skin, as a function of the chemical form and concentration of lidocaine (i.e. free ba…

research product

Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice

In the present work biocompatible quercetin and curcumin nanovesicles were developed as a novel approach to prevent and restore skin tissue defects on chronic cutaneous pathologies. Stable and suitable quercetin- and curcumin-loaded phospholipid vesicles, namely liposomes and penetration enhancer-containing vesicles (PEVs), were prepared. Vesicles were made from a highly biocompatible mixture of phospholipids and alternatively a natural polyphenol, quercetin or curcumin. Liposomes were obtained by adding water, while PEVs by adding polyethylene glycol 400 and Oramix®CG110 to the water phase. Transmission electron microscopy, cryogenic-transmission electron microscopy and small- and wide-ang…

research product

Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin

[EN] Resveratrol and gallic acid, a lipophilic and a hydrophilic phenol, were co-loaded in innovative, biocompatible nanovesicles conceived for ensuring the protection of the skin from oxidative-and inflammatory-related affections. The basic vesicles, liposomes and glycerosomes, were produced by a simple, one-step method involving the dispersion of phospholipid and phenols in water or water/glycerol blend, respectively. Liposomes and glycerosomes were modified by the addition of poloxamer, a stabilizer and viscosity enhancer, thus obtaining viscous or semisolid dispersions of structured vesicles. The vesicles were spherical, unilamellar and small in size (similar to 70 nm in diameter). The …

research product

Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin.

This work aimed at finding an innovative vesicle-type formulation able to improve the bioavailability of curcumin upon oral administration. To this purpose, phospholipid, Eudragit® S100 and hyaluronan sodium salt were combined to obtain eudragit-hyaluronan immobilized vesicles using an easy and environmentally-friendly method. For the first time, the two polymers were combined in a system intended for oral delivery, to enhance curcumin stability when facing the harsh environment of the gastrointestinal tract. Four different formulations were prepared, keeping constant the amount of the phospholipid and varying the eudragit-hyaluronan ratio. The freeze-drying of the samples, performed to inc…

research product

Inhibition of skin inflammation by baicalin ultradeformable vesicles.

The topical efficacy of baicalin, a natural flavonoid isolated from Scutellaria baicalensis Georgi, which has several beneficial properties, such as antioxidative, antiviral, anti-inflammatory and antiproliferative, is hindered by its poor aqueous solubility and low skin permeability. Therefore, its incorporation into appropriate phospholipid vesicles could be a useful tool to improve its local activity. To this purpose, baicalin at increasing concentrations up to saturation, was incorporated in ultradeformable vesicles, which were small in size (∼67nm), monodispersed (PI<0.19) and biocompatible, regardless of the concentration of baicalin, as confirmed by in vitro studies using fibroblasts…

research product

Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy.

0.5-1% of the world's population is affected by vitiligo, a disease characterized by a gradual depigmentation of the skin. Baicalin and berberine are natural compounds with beneficial activities, such as antioxidant, anti-inflammatory and proliferative effects. These polyphenols could be useful for the treatment of vitiligo symptoms, and their efficacy can be improved by loading in suitable carriers. The aim of this work was to formulate and characterize baicalin or berberine loaded ultradeformable vesicles, and demonstrate their potential as adjuvants in the treatment of vitiligo. The vesicles were produced using a previously reported simple, scalable method. Their morphology, size distrib…

research product

Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin

Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellan-transfersomes obtained by an easy, scalable method. The vesicles were small in size (~107 nm) and monodispersed (P.I. ≤ 0.24), forming a viscous system (~24 mPa/s) as compared to transfersomes (~1.6 mPa/s), as confirmed by rheological studies. Gellan was anchored to the bilayer domains through cholesterol, and the polymer chains were distributed onto the outer surface of the bilayer, thus forming a core-shell structure, as suggested by SAXS analyses. The optimal carrier ability of core-shell gellan-transfersomes was established by the high deposition of baicalin in th…

research product

Eco-scalable baicalin loaded vesicles developed by combining phospholipid with ethanol, glycerol, and propylene glycol to enhance skin permeation and protection.

Abstract A new class of biocompatible and scalable phospholipid vesicles was developed, aiming at improving the efficacy of baicalin on the skin. Phosphatidylcholine and baicalin (a natural polyphenol) were hydrated in two steps with a mixture of ethanol, glycerol, and propylene glycol at different ratios, and a low amount of water (4%). Hence, water was almost completely replaced by the co-solvents, which were never used before as predominant dispersing medium of phospholipid vesicles. The vesicles appeared three-dimensionally structured, forming a network that conferred a high viscosity to the dispersions. The vesicles were unilamellar, small in size (∼100 nm), and stable during 12 months…

research product

Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation

Purpose: To develop quercetin-loaded phospholipid vesicles, namely liposomes and PEVs (Penetration Enhancer-containing Vesicles), and to investigate their efficacy on TPA-induced skin inflammation. Methods: Vesicles were made from a mixture of phospholipids, quercetin and polyethylene glycol 400 (PEG), specifically added to increase drug solubility and penetration through the skin. Vesicle morphology and self-assembly were probed by Cryo-Transmission Electron Microscopy and Small/Wide Angle X-ray Scattering, as well as the main physico-chemical features by Light Scattering. The anti-inflammatory efficacy of quercetin nanovesicles was assessed in vivo on TPA-treated mice dorsal skin by the d…

research product

Faceted phospholipid vesicles tailored for the delivery of Santolina insularis essential oil to the skin

The aim of this work was to formulate Santolina insularis essential oil-loaded nanocarriers, namely Penetration Enhancer containing Vesicles (PEVs), evaluate the physico-chemical features and stability, and gain insights into their ability to deliver the oil to the skin.S. insularis essential oil was obtained by steam distillation, and was predominantly composed of terpenes, the most abundant being β-phellandrene (22.6%), myrcene (11.4%) and curcumenes (12.1%). Vesicles were prepared using phosphatidylcholine, and ethylene or propylene glycol were added to the water phase (10% (v/v)) to improve vesicle performances as delivery systems. Vesicles were deeply characterized by light scattering,…

research product

Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: Liposomes, ethosomes and PEVs

Diclofenac-loaded phospholipid vesicles, namely conventional liposomes, ethosomes and PEVs (penetration enhancer-containing vesicles) were developed and their efficacy in TPA (phorbol ester) induced skin inflammation was examined. Vesicles were made from a cheap and unpurified mixture of phospholipids and diclofenac sodium; Transcutol P and propylene glycol were added to obtain PEVs, and ethanol to produce ethosomes. The structure and lamellar organization of the vesicle bilayer were investigated by transmission electron microscopy and small and wide angle X-ray scattering, as well as the main physico-chemical features. The formulations, along with a diclofenac solution and commercial Volta…

research product

Co-Loading of Ascorbic Acid and Tocopherol in Eudragit-Nutriosomes to Counteract Intestinal Oxidative Stress

The present study aimed at developing a new vesicular formulation capable of promoting the protective effect of ascorbic acid and tocopherol against intestinal oxidative stress damage, and their efficacy in intestinal wound healing upon oral administration. A pH-dependent copolymer (Eudragit&reg

research product

Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections

Citrus species extracts are well known sources of bio-functional compounds with health-promoting effects. In particular, essential oils are known for their antibacterial activity due to the high content of terpenes. In this work, the steam-distilled essential oil from the leaves of Citrus limon var. pompia was loaded in phospholipid vesicles. The physico-chemical characteristics of the essential oil loaded vesicles were compared with those of vesicles that were loaded with citral, which is one of the most abundant terpenes of Citrus essential oils. The biocompatibility of the vesicles was assessed in vitro in human keratinocytes. Furthermore, the antimicrobial activity of the vesicles was t…

research product

Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases

The aim of the work was to extract, characterize, and formulate Thymus capitatus (Tymbra capitata) essential oil in phospholipid vesicles: liposomes, glycerosomes and Penetration Enhancer-containing Vesicles (PEVs). The steam-distilled essential oil was mainly composed of carvacrol. The oil was mixed with lecithin and water to produce liposomes, or different ratios of water/glycerol or water/propylene glycol (PG) to produce glycerosomes and PG-PEVs, respectively. Cryo-TEM showed the formation of unilamellar, spherical vesicles, and light scattering disclosed that their size increased in the presence of glycerol or PG, which improved long-term stability. The formulations were highly biocompa…

research product

Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin.

The ability of a recently developed novel class of liposomes to promote dermal delivery of tretinoin (TRA) was evaluated. New penetration enhancer-containing vesicles (PEVs) were prepared adding to conventional phosphatidylcholine vesicles (control liposomes) different hydrophilic penetration enhancers: Oramix® NS10 (OrNS10), Labrasol® (Lab), Transcutol® P (Trc), and propylene glycol (PG). Vesicles were characterized by morphology, size distribution, zeta potential, incorporation efficiency, stability, rheological behaviour, and deformability. Small, negatively charged, non-deformable, multilamellar vesicles were obtained. Rheological studies showed that PEVs had fluidity higher than conven…

research product

Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages

Abstract In the present work, red grape seed and stalk extracts were incorporated in vesicular systems designed for topical application. The phytocomplexes were obtained by maceration of biomasses in ethanol and subsequent lyophilisation. Seed extract was rich in catechin, epicatechin, epicatechin gallate, while gallic acid, epigallocatechin gallate, quercetin, quercetin 3-glucoside and malvidin-3-glucoside were detected in higher amounts in the stalk extract. Both extracts were incorporated in liposomes, hyalurosomes and transfersomes. In addition, hyalo-transfersomes were developed for the first time in this work, by combining the main modifiers of hyalurosomes and transfersomes (i.e., so…

research product

Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries.

Liquorice extract, obtained by percolation in ethanol of Glycyrrhiza glabra L. roots, was incorporated in liposomes and hyalurosomes, new phospholipid-sodium hyaluronate vesicles, and their protective effect against oxidative stress skin damages was probed. As a comparison, raw glycyrrhizin was also tested. All the vesicles were small in size (≤ 100 nm), with a highly negative zeta potential ensuring long-term stability, and able to incorporate a high amount of the extract. In vitro tests showed that the liquorice extract loaded in vesicles was able to scavenge DPPH free radical (80% inhibition) and to protect 3T3 fibroblasts against H2O2-induced oxidative stress, restoring the normal condi…

research product

Innovative strategies to treat skin wounds with mangiferin: fabrication of transferosomes modified with glycols and mucin

Aim: The moisturizing properties of glycerol, the penetration enhancing capability of propylene glycol and the bioadhesive properties of mucin were combined to improve the carrier capabilities of transfersomes and the efficacy of mangiferin in the treatment of skin lesions. Materials &amp; methods: Mangiferin was incorporated in transfersomes and glycoltransfersomes, which were also modified with mucin. The physico–chemical features were assessed, along with the efficacy against oxidative stress and skin wounds in vitro and in vivo. Results: Glycoltransfersomes promoted the deposition of mangiferin in epidermis and dermis, protected fibroblasts from oxidative stress and stimulated their pr…

research product

Co-loading of finasteride and baicalin in phospholipid vesicles tailored for the treatment of hair disorders

[EN] Hair loss affects a large number of people worldwide and it has a negative impact on the quality of life. Despite the availability of different drugs for the treatment of hair disorders, therapeutic options are still limited and scarcely effective. An innovative strategy to improve the efficacy of alopecia treatment is presented in this work. Finasteride, the only oral synthetic drug approved by Unites States Federal Drug Administration, was loaded in phospholipid vesicles. In addition, baicalin was co-loaded as an adjuvant. Their effect on hair growth was evaluatedin vitroandin vivo. Liposomes, hyalurosomes, glycerosomes and glycerol-hyalurosomes were manufactured by using a simple me…

research product

Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation.

In this work we studied various nanoformulations of resveratrol in phospholipid vesicles. Conventional phophatidylcholine liposomes were prepared and characterized in parallel with PEVs (Penetration Enhancer-containing Vesicles) obtained by adding one of eight selected amphiphilic penetration enhancers (PEs; 0.2% w/v; HLB range 1-16) to the composition. All vesicles were around 100 nm, negatively charged (∼-30 mV) and able to incorporate resveratrol in good yields (>74%). The structure and the lamellar self-organization of the vesicles were investigated by Transmission Electron Microscopy (TEM) and Small and Wide Angle X-ray Scattering (SWAXS). These analyses showed that the lamellarity of …

research product