6533b7defe1ef96bd1275ba5
RESEARCH PRODUCT
On Certain Metrizable Locally Convex Spaces
M. Valdiviasubject
CombinatoricsLocally convex topological vector spaceMetrization theoremConvex setHausdorff spaceMathematics::General TopologyField (mathematics)CodimensionSpace (mathematics)EquicontinuityMathematicsdescription
Publisher Summary This chapter discusses on certain metrizable locally convex spaces. The linear spaces used are defined over the field IK of real or complex numbers. The word "space" will mean "Hausdorff locally convex space". This chapter presents a proposition which states if U be a neighborhood of the origin in a space E. If A is a barrel in E which is not a neighborhood of the origin and F is a closed subspace of finite codimension in E’ [σ(E’,E)], then U° ∩ F does not contain A° ∩ F. Suppose that U° ∩ F contain A° ∩ F. Then A° ∩ F is equicontinuous hence W is also equicontinuous. Since W° is contained in A, it follows that A is a neighborhood of the origin, a contradiction.
year | journal | country | edition | language |
---|---|---|---|---|
1986-01-01 |