6533b7defe1ef96bd1275d05

RESEARCH PRODUCT

Carbon stable isotope composition of charophyte organic matter in a small and shallow Spanish water body as a baseline for future trophic studies

Adriana GarcíaMaría A. RodrigoAllan R. Chivas

subject

Albufera de Valencia Natural Park.NicheMyriophyllum spicatumChara hispidaAquatic Scienceδ13C signatureBotanyOrganic matterlcsh:Physical geographylcsh:Environmental sciencesWater Science and TechnologyTrophic levellcsh:GE1-350Total organic carbonchemistry.chemical_classificationNitella hyalinaEcologyMyriophyllumbiologyEcologyStable isotope ratiolcsh:Geography. Anthropology. RecreationTolypella glomeratabiology.organism_classificationMacrophytelcsh:GchemistryBenthic zonelcsh:GB3-5030

description

<p>Quantitative descriptions of foodweb structure based on isotope niche space require knowledge of producers’ isotopic signatures. In freshwater ecosystems charophytes are one of the main components of submerged vegetation and the feeding base for many herbivorous consumers, but knowledge about their organic carbon isotopic signatures is sparse. In this study, the δ<sup>13</sup>C organic values (and organic %C and %N) of the four species of submerged macrophytes (three charophytes - <em>Chara hispida</em>, <em>Nitella hyalina</em> and <em>Tolypella glomerata </em>- and one angiosperm, <em>Myriophyllum spicatum</em>) growing in a newly created shallow pond were measured monthly over a period of one year, to discern if i) all charophyte species susceptible to being food for consumers and growing in the same waterbody have the same C isotopic composition; ii) the δ<sup>13</sup>C values of a charophyte species change on a seasonal and spatial scale; iii) the different parts (apical nodes, internodes, rhizoids, reproductive organs, oospores) of a charophyte species have the same isotopic composition. The δ<sup>13</sup>C, %C and %N values of organic matter in the sediments where the plants were rooted were also measured as well as several limnological variables. The δ<sup>13</sup>C values for the angiosperm (-13.7±0.7‰) indicated <sup>13</sup>C-enrichment, whereas the <em>N. hyalina</em> δ<sup>13</sup>C values were the most negative (-22.4±0.7‰). The mean δ<sup>13</sup>C value for <em>C. hispida </em>was -19.0±1.0‰ and -20.7±0.8‰ for <em>T. glomerata.</em> <em>C. hispida</em> δ<sup>13</sup>C values had a significant seasonal variation with <sup>13</sup>C-poor values in the cold season, and slight spatial differences. Statistically significant differences were found between charophyte rhizoids (<sup>13</sup>C-enriched) and the other parts of the thalli. The δ<sup>13</sup>C values in the sediments varied throughout time (-13‰ to -26‰). The C content was lower in the charophytes than in the angiosperm and there were no large differences among the charophytes. Charophyte fructifications were enriched in organic C compared to the thalli parts. The study provides an isotopic baseline for further studies for the elucidation of higher trophic-level relationships which are particularly complex in shallow water bodies where interactions between the pelagic and the benthic zones are intricate.</p>

https://doi.org/10.4081/jlimnol.2015.1268