6533b7defe1ef96bd1275f2c

RESEARCH PRODUCT

Robust H∞ sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system

Xiaotao LiuHamid Reza KarimiHui ZhangJunmin Wang

subject

Variable structure controlEngineeringbusiness.industrypole placementMechanical EngineeringLinear systemLinear matrix inequalitysliding mode controlComputer Science Applications1707 Computer Vision and Pattern RecognitionVDP::Technology: 500::Electrotechnical disciplines: 540Sliding mode controlLinear matrix inequalities (LMIs); Pole placement; Sliding mode control; Control and Systems Engineering; Software; Mechanical Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Industrial and Manufacturing EngineeringVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Industrial and Manufacturing EngineeringComputer Science ApplicationsNonlinear systemFluid powerControl theoryControl and Systems EngineeringFull state feedbacklinear matrix inequalities (LMIs)ActuatorbusinessSoftwareH∞ control

description

Published version of an article in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-014-5910-8 In this paper, we exploit the sliding mode control problem for a fluid power electrohydraulic actuator (EHA) system. To characterize the nonlinearity of the friction, the EHA system is modeled as a linear system with a system uncertainty. Practically, it is assumed that the system is also subject to the load disturbance and the external noise. An integral sliding mode controller is proposed to design. The advanced techniques such as the H ∞ control and the regional pole placement are employed to derive the optimal feedback gain which can be calculated by solving a necessary and sufficient condition in the form of linear matrix inequality. A sliding mode control law is developed such that the sliding mode reaching law is satisfied. Simulation and comparison results show the effectiveness of the proposed design method.

http://hdl.handle.net/11250/276750