6533b7defe1ef96bd1276772
RESEARCH PRODUCT
Upper bounds for the zeros of ultraspherical polynomials
ÁRpád ElbertAndrea Laforgiasubject
PolynomialMathematics(all)Numerical AnalysisGegenbauer polynomialsDifferential equationGeneral MathematicsApplied MathematicsMathematical analysisZero (complex analysis)Upper and lower boundsCombinatoricssymbols.namesakesymbolsOrder (group theory)Newton's methodAnalysisMathematicsdescription
AbstractFor k = 1, 2, …, [n2] let xnk(λ) denote the Kth positive zero in decreasing order of the ultraspherical polynomial Pn(λ)(x). We establish upper bounds for xnk(λ). All the bounds become exact when λ = 0 and, in some cases (see case (iii) of Theorem 3.1), also when λ = 1. As a consequence of our results, we obtain for the largest zero xn1(λ)0.. We point out that our results remain useful for large values of λ. Numerical examples show that our upper bounds are quite sharp.
year | journal | country | edition | language |
---|---|---|---|---|
1990-04-01 | Journal of Approximation Theory |