6533b7defe1ef96bd1276817
RESEARCH PRODUCT
Tridiagonal preconditioning for Poisson-like difference equations with flat grids: Application to incompressible atmospheric flow
Orlando AstudilloIngeborg Bischoff-gaussMelitta Fiebig-wittmaackWolfgang Börsch-supansubject
Poisson-like equationBiconjugate gradient method010504 meteorology & atmospheric sciencesTridiagonal matrixOperator (physics)Applied MathematicsLinear systemGeometryPreconditioning010103 numerical & computational mathematics01 natural sciencesComputational MathematicsConjugate gradient methodConvergence (routing)Convergence accelerationApplied mathematicsDynamic pressure0101 mathematicsCondition numberCondition numberAtmospheric model0105 earth and related environmental sciencesMathematicsFlat gridsdescription
AbstractThe convergence of many iterative procedures, in particular that of the conjugate gradient method, strongly depends on the condition number of the linear system to be solved. In cases with a large condition number, therefore, preconditioning is often used to transform the system into an equivalent one, with a smaller condition number and therefore faster convergence. For Poisson-like difference equations with flat grids, the vertical part of the difference operator is dominant and tridiagonal and can be used for preconditioning. Such a procedure has been applied to incompressible atmospheric flows to preserve incompressibility, where a system of Poisson-like difference equations is to be solved for the dynamic pressure part. In the mesoscale atmospheric model KAMM, convergence has been speeded up considerably by tridiagonal preconditioning, even though the system matrix is not symmetric and, hence, the biconjugate gradient method must be used.
year | journal | country | edition | language |
---|---|---|---|---|
2011-10-01 | Journal of Computational and Applied Mathematics |