6533b7defe1ef96bd127694d
RESEARCH PRODUCT
Retrieving infinite numbers of patterns in a spin-glass model of immune networks
A.c.c. CoolenAdriano BarraElena AgliariAlessia AnnibaleDaniele Tantarisubject
0301 basic medicineSimilarity (geometry)Spin glassComputer sciencestatistical mechanicFOS: Physical sciencesGeneral Physics and AstronomyNetwork topologyTopology01 natural sciencesQuantitative Biology::Cell Behavior03 medical and health sciencesCell Behavior (q-bio.CB)0103 physical sciencesattractor neural-networks; statistical mechanics; brain networks; Physics and Astronomy (all)Physics - Biological Physics010306 general physicsAssociative propertybrain networkArtificial neural networkMechanism (biology)ErgodicityDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksAcquired immune system030104 developmental biologyBiological Physics (physics.bio-ph)FOS: Biological sciencesattractor neural-networkQuantitative Biology - Cell Behaviordescription
The similarity between neural and immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies {\em in parallel}. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, and described by graphs with finite connectivity. In this paper we use replica techniques to solve a statistical mechanical immune network model with `coordinator branches' (T-cells) and `effector branches' (B-cells), and show how the finite connectivity enables the system to manage an extensive number of immune clones simultaneously, even above the percolation threshold. The system exhibits only weak ergodicity breaking, so that both multiple antigen defense and homeostasis can be accomplished.
year | journal | country | edition | language |
---|---|---|---|---|
2013-05-09 |