6533b7defe1ef96bd12769bf

RESEARCH PRODUCT

Formation of nanostructures in Eu3+ doped glass-ceramics: an XAS study.

Ulises R. Rodríguez-mendozaVíctor LavínJulio Pellicer-porresAlfredo SeguraGema Martínez-criado

subject

X-ray absorption spectroscopyCeramicsMaterials scienceNanostructureDopingMolecular ConformationMineralogyThermal treatmentCondensed Matter PhysicsSpectral linePhase TransitionNanostructuresX-Ray Absorption SpectroscopyNanocrystalEuropiumvisual_artMaterials Testingvisual_art.visual_art_mediumPhysical chemistryGeneral Materials ScienceCeramicGlassAbsorption (chemistry)Particle SizeCrystallization

description

We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates β-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form β-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.

10.1088/0953-8984/25/2/025303https://pubmed.ncbi.nlm.nih.gov/23197076