6533b81ffe1ef96bd1277085
RESEARCH PRODUCT
Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR)
Bartosz PieterekJakub CiazelaJakub CiazelaJakub CiazelaMarina LazarovHenry J. B. DickThomas KuhnRoman E. BotcharnikovRoman E. BotcharnikovJuergen KoepkeAndrzej MuszyńskiStephan Schuthsubject
010504 meteorology & atmospheric sciencesGeochemistryCrustengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)Oceanic core complexGeochemistry and PetrologyUltramafic rockOceanic crustTransition zoneengineeringPlagioclasePyrrhotiteGeology0105 earth and related environmental sciencesdescription
Abstract The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30′N, 45°20′W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7–69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90–209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1−xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from −0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (
year | journal | country | edition | language |
---|---|---|---|---|
2018-06-01 | Geochimica et Cosmochimica Acta |