6533b81ffe1ef96bd12770ec

RESEARCH PRODUCT

Menger curvature and rectifiability in metric spaces

Immo Hahlomaa

subject

Mathematics(all)Pure mathematicsGeneral MathematicsMathematical analysisMetric Geometry (math.MG)Metric spaceMenger curvatureHausdorff distanceMathematics - Metric GeometryMenger curvatureFOS: MathematicsHausdorff measureRectifiability28A75Metric spaceMathematics

description

We show that for any metric space $X$ the condition \[ \int_X\int_X\int_X c(z_1,z_2,z_3)^2\, d\Hm z_1\, d\Hm z_2\, d\Hm z_3 < \infty, \] where $c(z_1,z_2,z_3)$ is the Menger curvature of the triple $(z_1,z_2,z_3)$, guarantees that $X$ is rectifiable.

https://dx.doi.org/10.48550/arxiv.1212.0700