Search results for "Rectifiability"
showing 10 items of 13 documents
Singular integrals on regular curves in the Heisenberg group
2019
Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …
Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups
2020
We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.
Uniform rectifiability implies Varopoulos extensions
2020
We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…
Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces
2019
This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits. peerReviewed
Menger curvature and rectifiability in metric spaces
2008
We show that for any metric space $X$ the condition \[ \int_X\int_X\int_X c(z_1,z_2,z_3)^2\, d\Hm z_1\, d\Hm z_2\, d\Hm z_3 < \infty, \] where $c(z_1,z_2,z_3)$ is the Menger curvature of the triple $(z_1,z_2,z_3)$, guarantees that $X$ is rectifiable.
A proof of Carleson's 𝜀2-conjecture
2021
In this paper we provide a proof of the Carleson 𝜀2-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson 𝜀2-square function. peerReviewed
Rectifiability of RCD(K,N) spaces via δ-splitting maps
2021
In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed
Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces
2020
This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a -hypersurface without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorff dimension 12, with…
Ω-symmetric measures and related singular integrals
2021
Two examples related to conical energies
2022
In a recent article we introduced and studied conical energies. We used them to prove three results: a characterization of rectifiable measures, a characterization of sets with big pieces of Lipschitz graphs, and a sufficient condition for boundedness of nice singular integral operators. In this note we give two examples related to sharpness of these results. One of them is due to Joyce and M\"{o}rters, the other is new and could be of independent interest as an example of a relatively ugly set containing big pieces of Lipschitz graphs.