6533b81ffe1ef96bd1277137

RESEARCH PRODUCT

Radio Labelings of Distance Graphs

Roman AdaOlivier TogniJan EksteinPřemysl Holub

subject

Graph labeling05C12 05C78Edge-graceful labeling0211 other engineering and technologies0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesCombinatoricsIndifference graphChordal graphradio k-labeling numberFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsGraph toughnessMathematicsDiscrete mathematicsResistance distanceApplied Mathematicsgraph labeling021107 urban & regional planning[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]distance graph[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]010201 computation theory & mathematicsIndependent setdistance graph.Combinatorics (math.CO)MSC 05C12 05C78Distance

description

A radio $k$-labeling of a connected graph $G$ is an assignment $c$ of non negative integers to the vertices of $G$ such that $$|c(x) - c(y)| \geq k+1 - d(x,y),$$ for any two vertices $x$ and $y$, $x\ne y$, where $d(x,y)$ is the distance between $x$ and $y$ in $G$. In this paper, we study radio labelings of distance graphs, i.e., graphs with the set $\Z$ of integers as vertex set and in which two distinct vertices $i, j \in \Z$ are adjacent if and only if $|i - j| \in D$.

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00787442/file/TogniRadioAbstract.pdf