6533b81ffe1ef96bd12771e3
RESEARCH PRODUCT
Integrated WAAM-Subtractive Versus Pure Subtractive Manufacturing Approaches: An Energy Efficiency Comparison
Gianni CampatelliGiuseppe VenturiniGiuseppe IngaraoPaolo Claudio PriaroneFilippo Montevecchisubject
0209 industrial biotechnologyPrimary energyAdditive manufacturingProcess (engineering)Computer science02 engineering and technologyIndustrial and Manufacturing Engineering020901 industrial engineering & automationMachiningAdditive manufacturing; Energy efficiency; Process comparisonManagement of Technology and InnovationComponent (UML)General Materials ScienceProcess engineeringSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneFlexibility (engineering)Subtractive colorRenewable Energy Sustainability and the Environmentbusiness.industryMechanical Engineering021001 nanoscience & nanotechnologyEnergy efficiencyProcess comparison0210 nano-technologybusinessEnergy (signal processing)Efficient energy usedescription
Over the last years, additive manufacturing (AM) has been gathering momentum both in the academic and in the industrial world. Besides the obvious benefits in terms of flexibility and process capabilities, the environmental performance of such processes has still to be properly analyzed. Actually, the advantages of additive manufacturing over conventional processes are not obvious. Indeed, different manufacturing approaches result in different amounts of involved material and in different processing energy demands. Environmental comparative analyses are hence crucial to properly characterize AM processes. In this paper, an energetic comparison between the emerging wire arc additive manufacturing (WAAM) process and a traditional machining-from-bulk solution to produce a steel blade is presented. A methodology accounting for all the material and energy flows of the whole component life cycle is proposed. Experimental measurements and environmental databases are used to quantify the primary energy demand at each stage of the life cycle. The results reveal that, for the analyzed case study, an integrated additive (WAAM)-subtractive manufacturing route enables significant material and primary energy savings with respect to traditionally applied approaches.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-01 | International Journal of Precision Engineering and Manufacturing-Green Technology |