6533b81ffe1ef96bd1277376

RESEARCH PRODUCT

Parabolic equations with natural growth approximated by nonlocal equations

Sergio Segura De LeónTommaso LeonoriAlexis Molino

subject

PhysicsKernel (set theory)Applied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesParabolic partial differential equationOmega010101 applied mathematicsSymmetric functionCombinatoricssymbols.namesakeMathematics - Analysis of PDEsMathematics - Analysis of PDEs; Mathematics - Analysis of PDEsBounded functionDirichlet boundary conditionsymbolsFOS: MathematicsUniqueness0101 mathematicsAnalysis of PDEs (math.AP)

description

In this paper we study several aspects related with solutions of nonlocal problems whose prototype is $$ u_t =\displaystyle \int_{\mathbb{R}^N} J(x-y) \big( u(y,t) -u(x,t) \big) \mathcal G\big( u(y,t) -u(x,t) \big) dy \qquad \mbox{ in } \, \Omega \times (0,T)\,, $$ being $ u (x,t)=0 \mbox{ in } (\mathbb{R}^N\setminus \Omega )\times (0,T)\,$ and $ u(x,0)=u_0 (x) \mbox{ in } \Omega$. We take, as the most important instance, $\mathcal G (s) \sim 1+ \frac{\mu}{2} \frac{s}{1+\mu^2 s^2 }$ with $\mu\in \mathbb{R}$ as well as $u_0 \in L^1 (\Omega)$, $J$ is a smooth symmetric function with compact support and $\Omega$ is either a bounded smooth subset of $\mathbb{R}^N$, with nonlocal Dirichlet boundary condition, or $\mathbb{R}^N$ itself. The results deal with existence, uniqueness, comparison principle and asymptotic behavior. Moreover we prove that if the kernel rescales in a suitable way, the unique solution of the above problem converges to a solution of the deterministic Kardar-Parisi-Zhang equation.

10.1142/s0219199719500883http://arxiv.org/abs/1703.00252