6533b81ffe1ef96bd12773ac

RESEARCH PRODUCT

Unifying vectors and matrices of different dimensions through nonlinear embeddings

Vladimir García-morales

subject

Pure mathematicsPartial differential equationDynamical systems theoryComputer Networks and CommunicationsCellular Automata and Lattice Gases (nlin.CG)SupergravityDegrees of freedom (physics and chemistry)FOS: Physical sciencesMathematical Physics (math-ph)Pattern Formation and Solitons (nlin.PS)Nonlinear Sciences - Pattern Formation and SolitonsComputer Science ApplicationsNonlinear systemArtificial IntelligenceEmbeddingMathematical structureNonlinear Sciences - Cellular Automata and Lattice GasesMathematical PhysicsInformation SystemsCurse of dimensionalityMathematics

description

Complex systems may morph between structures with different dimensionality and degrees of freedom. As a tool for their modelling, nonlinear embeddings are introduced that encompass objects with different dimensionality as a continuous parameter $\kappa \in \mathbb{R}$ is being varied, thus allowing the unification of vectors, matrices and tensors in single mathematical structures. This technique is applied to construct warped models in the passage from supergravity in 10 or 11-dimensional spacetimes to 4-dimensional ones. We also show how nonlinear embeddings can be used to connect cellular automata (CAs) to coupled map lattices (CMLs) and to nonlinear partial differential equations, deriving a class of nonlinear diffusion equations. Finally, by means of nonlinear embeddings we introduce CA connections, a class of CMLs that connect any two arbitrary CAs in the limits $\kappa \to 0$ and $\kappa \to \infty$ of the embedding.

https://doi.org/10.1088/2632-072x/ab7d87