6533b81ffe1ef96bd1277abf
RESEARCH PRODUCT
Fast Matrix Multiplication
Andris AmbainisYuval FilmusFrançois Le Gallsubject
Class (set theory)Conjecturepeople.profession0102 computer and information sciences02 engineering and technology01 natural sciencesIdentity (music)Matrix multiplicationRunning timeCombinatorics010201 computation theory & mathematicsTensor (intrinsic definition)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingCoppersmithpeopleMathematicsCoppersmith–Winograd algorithmdescription
Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and Winograd (1990), ran in time O(n2.3755). Recently, a surge of activity by Stothers, Vassilevska-Williams, and Le~Gall has led to an improved algorithm running in time O(n2.3729). These algorithms are obtained by analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd. We show that this exact approach cannot result in an algorithm with running time O(n2.3725), and identify a wide class of variants of this approach which cannot result in an algorithm with running time $O(n^{2.3078}); in particular, this approach cannot prove the conjecture that for every e > 0, two n x n matrices can be multiplied in time O(n2+e).We describe a new framework extending the original laser method, which is the method underlying the previously mentioned algorithms. Our framework accommodates the algorithms by Coppersmith and Winograd, Stothers, Vassilevska-Williams and Le~Gall. We obtain our main result by analyzing this framework. The framework also explains why taking tensor powers of the Coppersmith--Winograd identity results in faster algorithms.
year | journal | country | edition | language |
---|---|---|---|---|
2015-06-14 | Proceedings of the forty-seventh annual ACM symposium on Theory of Computing |