6533b81ffe1ef96bd1277b2f
RESEARCH PRODUCT
An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): At the crossroads of poriferan innate immune and apoptotic pathways
Julia S. MarklMatthias WiensDayane SerenoMelanie BausenWerner E.g. MüllerTarek A. Elkhoolysubject
0301 basic medicineEvolutionBiophysicsApoptosisBiologyBiochemistrylcsh:Biochemistry03 medical and health sciencesNeurotrophic factorslcsh:QD415-436lcsh:QH301-705.5MANFInnate immunityInnate immune systemEndoplasmic reticulumbiology.organism_classificationTransport inhibitorCell biologyPoriferaSuberites domuncula030104 developmental biologylcsh:Biology (General)Unfolded protein responsebiology.proteinER stressNeurotrophinSuberitesResearch Articledescription
The mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a recently discovered family of neurotrophic factors. MANF can be secreted but is generally resident within the endoplasmic reticulum (ER) in neuronal and non-neuronal cells, where it is involved in the ER stress response with pro-survival effects. Here we report the discovery of the MANF homolog SDMANF in the sponge Suberites domuncula. The basal positioning of sponges (phylum Porifera) in the animal tree of life offers a unique vantage point on the early evolution of the metazoan-specific genetic toolkit and molecular pathways. Since sponges lack a conventional nervous system, SDMANF presents an enticing opportunity to investigate the evolutionary ancient role of these neurotrophic factors. SDMANF shares considerable sequence similarity with its metazoan homologs. It also comprises a putative protein binding domain with sequence similarities to the Bcl-2 family of apoptotic regulators. In Suberites, SDMANF is expressed in the vicinity of bacteriocytes, where it co-localizes with the toll-like receptor SDTLR. In transfected human cells, SDMANF was detected in both the organelle protein fraction and the cell culture medium. The intracellular SDMANF protein level was up-regulated in response to both a Golgi/ER transport inhibitor and bacterial lipopolysaccharides (LPS). Upon LPS challenge, transfected cells revealed a decreased caspase-3 activity and increased cell viability with no inducible Bax expression compared to the wild type. These results suggest a deep evolutionary original cytoprotective role of MANF, at the crossroads of innate immune and apoptotic pathways, of which a neurotrophic function might have arisen later in metazoan evolution.
year | journal | country | edition | language |
---|---|---|---|---|
2017-09-01 | Biochemistry and Biophysics Reports |