6533b81ffe1ef96bd1277b47
RESEARCH PRODUCT
Spin-transfer torque driven motion, deformation, and instabilities of magnetic skyrmions at high currents
Davi R. RodriguesJan MasellKarin Everschor-sitteB. F. Mckeeversubject
Condensed Matter::Quantum GasesPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSpintronicsSkyrmionHigh Energy Physics::PhenomenologySpin-transfer torqueFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsDomain wall (magnetism)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectric current010306 general physics0210 nano-technologyAnisotropySpin-½description
In chiral magnets, localized topological magnetic whirls, magnetic skyrmions, can be moved by spin polarized electric currents. Upon increasing the current strength, with prospects for high-speed skyrmion motion for spintronics applications in mind, isolated skyrmions deform away from their typical circular shape. We analyze the influence of spin-transfer torques on the shape of a single skyrmion, including its stability upon adiabatically increasing the strength of the applied electric current. For rather compact skyrmions at uniaxial anisotropies well above the critical anisotropy for domain wall formation, we find for high current densities that the skyrmion assumes a non-circular shape with a tail, reminiscent of a shooting star. For larger and hence softer skyrmions close to the critical anisotropy, in turn, we observe a critical current density above which skyrmions become unstable. We show that above a second critical current density the shooting star solution can be recovered also for these skyrmions.
year | journal | country | edition | language |
---|---|---|---|---|
2020-04-01 | Physical Review B |