6533b81ffe1ef96bd1277c47
RESEARCH PRODUCT
Kernel manifold alignment for domain adaptation
Devis TuiaGustau Camps-vallssubject
Computer and Information SciencesKernel FunctionsInformation Storage and RetrievalSocial Scienceslcsh:Medicine1100 General Agricultural and Biological SciencesResearch and Analysis MethodsInfographicsTopologyPattern Recognition AutomatedKernel MethodsCognitionLearning and MemoryMemory1300 General Biochemistry Genetics and Molecular BiologyImage Interpretation Computer-AssistedData MiningHumansPsychologyLife Science910 Geography & travelOperator TheoryManifoldslcsh:ScienceObject Recognition1000 MultidisciplinaryApplied MathematicsSimulation and ModelingData Visualizationlcsh:RCognitive PsychologyBiology and Life SciencesEigenvaluesFacial ExpressionAlgebra10122 Institute of GeographyLinear AlgebraData Interpretation StatisticalPhysical SciencesCognitive SciencePerceptionlcsh:QEigenvectorsGraphsAlgorithmsMathematicsResearch ArticleNeurosciencedescription
The wealth of sensory data coming from different modalities has opened numerous opportu- nities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. How- ever, multimodal architectures must rely on models able to adapt to changes in the data dis- tribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representa- tion domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for man- ifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting prop- erties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specifici- ties, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across- domains and data synthesis. To authors’ knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational efficiency, and discuss the generalization performance of KEMA under Rademacher principles of stability. Aligning multimodal data with KEMA reports outstanding benefits when used as a data pre-conditioner step in the standard data analysis processing chain. KEMA exhibits very good performance over competing methods in synthetic con- trolled examples, visual object recognition and recognition of facial expressions tasks. KEMA is especially well-suited to deal with high-dimensional problems, such as images and videos, and under complicated distortions, twists and warpings of the data manifolds. A fully functional toolbox is available at https://github.com/dtuia/KEMA.git.
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-16 |