6533b81ffe1ef96bd1277c5c
RESEARCH PRODUCT
A PHENOMENOLOGICAL OPERATOR DESCRIPTION OF INTERACTIONS BETWEEN POPULATIONS WITH APPLICATIONS TO MIGRATION
Francesco OliveriFabio Bagarellosubject
Heisenberg-like dynamicsComputer scienceApplied MathematicsPopulations and Evolution (q-bio.PE)FOS: Physical sciencesDynamics of competing populations with diffusion; Fermionic operators; Heisenberg-like dynamicsUpper and lower boundssymbols.namesakeQuadratic equationOperator (computer programming)Biological Physics (physics.bio-ph)Particle number operatorFOS: Biological sciencesModeling and SimulationsymbolsPhysics - Biological PhysicsStatistical physicsQuantitative Biology - Populations and EvolutionHamiltonian (quantum mechanics)Settore MAT/07 - Fisica MatematicaDynamics of competing populations with diffusionquantum tools for classical systemsFermionic operatorsdescription
We adopt an operatorial method based on the so-called creation, annihilation and number operators in the description of different systems in which two populations interact and move in a two-dimensional region. In particular, we discuss diffusion processes modeled by a quadratic hamiltonian. This general procedure will be adopted, in particular, in the description of migration phenomena. With respect to our previous analogous results, we use here fermionic operators since they automatically implement an upper bound for the population densities.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 | Mathematical Models and Methods in Applied Sciences |