6533b81ffe1ef96bd1278406

RESEARCH PRODUCT

Chapter 2 Fasciola, Lymnaeids and Human Fascioliasis, with a Global Overview on Disease Transmission, Epidemiology, Evolutionary Genetics, Molecular Epidemiology and Control

M. A. ValeroSantiago Mas-comaMaría Dolores Bargues

subject

biologyFasciolaMolecular epidemiologyHuman evolutionary geneticsHepaticaFasciola giganticaBiological dispersalZoologybiology.organism_classificationGenetic isolateFasciolidae

description

Abstract Fascioliasis, caused by liver fluke species of the genus Fasciola, has always been well recognized because of its high veterinary impact but it has been among the most neglected diseases for decades with regard to human infection. However, the increasing importance of human fascioliasis worldwide has re‐launched interest in fascioliasis. From the 1990s, many new concepts have been developed regarding human fascioliasis and these have furnished a new baseline for the human disease that is very different to a simple extrapolation from fascioliasis in livestock. Studies have shown that human fascioliasis presents marked heterogeneity, including different epidemiological situations and transmission patterns in different endemic areas. This heterogeneity, added to the present emergence/re‐emergence of the disease both in humans and animals in many regions, confirms a worrying global scenario. The huge negative impact of fascioliasis on human communities demands rapid action. When analyzing how better to define control measures for endemic areas differing at such a level, it would be useful to have genetic markers that could distinguish each type of transmission pattern and epidemiological situation. Accordingly, this chapter covers aspects of aetiology, geographical distribution, epidemiology, transmission and control in order to obtain a solid baseline for the interpretation of future results. The origins and geographical spread of F. hepatica and F. gigantica in both the ruminant pre‐domestication times and the livestock post‐domestication period are analyzed. Paleontological, archaeological and historical records, as well as genetic data on recent dispersal of livestock species, are taken into account to establish an evolutionary framework for the two fasciolids across all continents. Emphasis is given to the distributional overlap of both species and the roles of transportation, transhumance and trade in the different overlap situations. Areas with only one Fasciola spp. are distinguished from local and zonal overlaps in areas where both fasciolids co‐exist. Genetic techniques applied to liver flukes in recent years that are useful to elucidate the genetic characteristics of the two fasciolids are reviewed. The intra‐specific and inter‐specific variabilities of ‘pure’ F. hepatica and ‘pure’ F. gigantica were ascertained by means of complete sequences of ribosomal deoxyribonucleic acid (rDNA) internal transcribed spacer (ITS)‐2 and ITS‐1 and mitochondrial deoxyribonucleic acid (mtDNA) cox1 and nad1 from areas with only one fasciolid species. Fasciolid sequences of the same markers scattered in the literature are reviewed. The definitive haplotypes established appear to fit the proposed global evolutionary scenario. Problems posed by fasciolid cross‐breeding, introgression and hybridization in overlap areas are analyzed. Nuclear rDNA appears to correlate with adult fluke characteristics and fasciolid/lymnaeid specificity, whereas mtDNA does not. However, flukes sometimes appear so intermediate that they cannot be ascribed to either F. hepatica‐like or F. gigantica‐like forms and snail specificity may be opposite to the one deduced from the adult morphotype. The phenotypic characteristics of adults and eggs of ‘pure’ F. hepatica and F. gigantica, as well as of intermediate forms in overlap areas, are compared, with emphasis on the definitive host influence on egg size in humans. Knowledge is sufficient to support F. hepatica and F. gigantica as two valid species, which recently diverged by adaptation to different pecoran and lymnaeid hosts in areas with differing environmental characteristics. Their phenotypic differences and ancient pre‐domestication origins involve a broad geographical area that largely exceeds the typical, more local scenarios known for sub‐species units. Phenomena such as abnormal ploidy and aspermic parthenogenesis in hybrids suggest that their separate evolution in pre‐domestication times allowed them to achieve almost total genetic isolation. Recent sequencing results suggest that present assumptions on fasciolid‐lymnaeid specificity might be wrong. The crucial role of lymnaeids in fascioliasis transmission, epidemiology and control was the reason for launching a worldwide lymnaeid molecular characterization initiative. This initiative has already furnished useful results on several continents. A standardized methodology for fasciolids and lymnaeids is proposed herein in order that future work is undertaken on a comparable basis. A complete understanding of molecular epidemiology is expected to help greatly in designing global actions and local interventions for control of fascioliasis.

https://doi.org/10.1016/s0065-308x(09)69002-3