6533b81ffe1ef96bd1278661
RESEARCH PRODUCT
Thirty years unmanaged green roofs: Ecological research and design implications
Chiara CatalanoChiara CatalanoRiccardo GuarinoCorrado MarcenòVito Armando Laudicinasubject
0106 biological sciencesSeed dispersalGreen roofSettore AGR/13 - Chimica AgrariaSimple-intensive green roofs Temperate ecosystems Long term dynamics Plant functional traits Urban biodiversity Descriptors010501 environmental sciencesManagement Monitoring Policy and LawBiology010603 evolutionary biology01 natural sciences333: Bodenwirtschaft und RessourcenSimple-intensive green roofs Temperate ecosystems Long term dynamics Functional traits Urban biodiversity DescriptorsRuderal species577: Ökologie0105 earth and related environmental sciencesNature and Landscape ConservationEcologyEcologySpecies diversityPlant community15. Life on landbiology.organism_classificationUrban StudiesSettore BIO/03 - Botanica Ambientale E ApplicataNestednessFestuca ovinaFestuca rubradescription
Abstract The variations in species composition and assemblage of unmanaged simple-intensive green roofs in Hannover, Germany, were investigated over a thirty year period, in order to assess the persistence of the initial seed mixture and to evaluate floristic changes. The roofs were greened in 1985 with soil-based turf rolls sown with a mixture of five grasses (Festuca rubra, Festuca ovina, Agrostis capillaris, Lolium perenne and Poa pratensis). Three sets of 120 phytosociological releves, sampled in 1987, 1999 and 2014, have been compared to assess: (1) nestedness vs spatial turnover, (2) functional diversity and (3) the importance of vegetation dynamics on green roof performance and design. Results demonstrated that from 1987 to 1999 the species diversity increased and the species turnover prevailed over nestedness, due to the progressive niche occupation by new species. In contrast, from 1999 to 2014 species diversity remained steady, suggesting that nestedness prevailed over species turnover. The main driver of the observed functional changes was a shift towards relatively more thermoxeric conditions. In terms of plant life strategies, the competitive species sown on the roof gradually gave way to stress-tolerant and ruderal species, along with a progressive increase in species with shortdistance seed dispersal strategies. It is concluded that: (a) to create resilient green roofs, spontaneous colonisation should be accepted and considered as a design factor; and (b) regional plant communities could serve as a model for seed recruitment and installations.
year | journal | country | edition | language |
---|---|---|---|---|
2016-05-01 |