6533b81ffe1ef96bd12786d6

RESEARCH PRODUCT

Variational Bethe ansatz approach for dipolar one-dimensional bosons

Edmond OrignacRoberta CitroS. De Palo

subject

[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Dipolar interactionsFOS: Physical sciences02 engineering and technologyGas atomici interagenti01 natural sciencesBethe ansatzVariational methods in quantum mechanicsCondensed Matter - Strongly Correlated ElectronsQuantum mechanics0103 physical sciencesLieb–Liniger model010306 general physicsWave function[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]BosonPhysicsCondensed Matter::Quantum GasesLieb-Liniger modelStrongly Correlated Electrons (cond-mat.str-el)one dimensional bosonsFunction (mathematics)021001 nanoscience & nanotechnologyQuantum Gases (cond-mat.quant-gas)Exponent[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]0210 nano-technologyStructure factorGround stateCondensed Matter - Quantum Gases

description

We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as a function of density and the determination of the structure factor at small momenta. Moreover, in the case of attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide atoms.

10.1103/physrevb.101.045102http://hdl.handle.net/11386/4736072