6533b81ffe1ef96bd127876e
RESEARCH PRODUCT
Vitamin E deficiency induces liver nuclear factor-κB DNA-binding activity and changes in related genes
Federico V. PallardóMaría MoranteJuan SandovalMa Carmen Gómez-cabreraJosé L. RodríguezLuis Enrique Nores TorresTeresa BarberJuan R. Viñasubject
MaleVitaminChromatin ImmunoprecipitationGlutamate-Cysteine Ligasemedicine.medical_treatmentBlotting WesternBiologyBiochemistrychemistry.chemical_compoundCyclin D1CyclinsMalondialdehydemedicineAnimalsVitamin EVitamin E DeficiencyRNA MessengerRats WistarTranscription factorVitamin EBody WeightNF-kappa BPromoterDNAGeneral MedicineCell cycleGlutathioneRatsCell biologyGene Expression RegulationLiverBiochemistrychemistryVitamin E deficiencyChromatin immunoprecipitationdescription
The biological functions of vitamin E have been classically attributed to its property as a potent inhibitor of lipid peroxidation in cellular membranes. However, in 1991, Azzi's group first described that alpha-tocopherol inhibits smooth muscle cell proliferation in a protein kinase C (PKC)-dependent way, demonstrating a non-antioxidant cell signalling function for vitamin E. More recently, the capacity of alpha-tocopherol to modulate gene expression with the implication of different transcription factors, beyond its antioxidant properties, has also been established. This study was to determine the effect of vitamin E-deficiency on liver nuclear factor-kappa B (NF-kappaB) DNA-binding activity and the response of target antioxidant-defense genes and cell cycle modulators. Rats were fed either control diet or vitamin-E free diet until 60 or 90 days after birth. Vitamin E-deficiency enhanced liver DNA-binding activity of NF-kappaB [electrophoretic mobility-shift assay, (EMSA)] and up-regulated transcription of gamma-glutamylcysteine synthetase (gamma-GCSM; gamma-GCSC), cyclin D1 and cyclin E. We also showed down-regulation of p21(Waf1/Cip1) transcription. Western-blot analysis demonstrated that gamma-glutamylcysteine synthetase catalytic subunit (gamma-GCSC) and cyclin D1 showed a similar pattern to that found in the RT-PCR analysis. Moreover, chromatin immunoprecipitation (ChIP) assay demonstrated that NF-kappaB directly regulates transcription of gamma-GCS (both subunits) and cyclin D1 through the binding of NF-kappaB to the corresponding gene promoters, which was enhanced in vitamin E-deficiency. These findings show that vitamin E-deficiency induces significant molecular regulatory properties in liver cells with an altered expression of both antioxidant-defense genes and genes that control the cell cycle and demonstrate that liver NF-kappaB activation is involved in this response. Our results emphasize the importance of maintaining an adequate vitamin E consumption not only to prevent liver oxidative damage but also in modulating signal transduction.
year | journal | country | edition | language |
---|---|---|---|---|
2005-11-22 | Free Radical Research |