6533b81ffe1ef96bd1278794

RESEARCH PRODUCT

First Experiences on an Accurate SPH Method on GPUs

Elisa FrancomanoMarta PaliagaLivia MarcellinoArdelio Galletti

subject

SpeedupExploitGPUsComputer scienceComputer Networks and CommunicationsGPUSmoothed Particle Hydrodynamics method010103 numerical & computational mathematics01 natural sciencesComputational scienceSmoothed-particle hydrodynamicsInstruction setSettore MAT/08 - Analisi NumericaArtificial IntelligenceAccuracy; Approximation; GPUs; Kernel function; Smoothed particle hydrodynamics method; Speed-Up; Artificial Intelligence; Computer Networks and Communications; 1707; Signal Processing0101 mathematicsApproximationAccuracy1707Random access memoryLinear systemKernel functionSpeed-Up010101 applied mathematicsKernel (statistics)Signal Processing

description

It is well known that the standard formulation of the Smoothed Particle Hydrodynamics is usually poor when scattered data distribution is considered or when the approximation near the boundary occurs. Moreover, the method is computational demanding when a high number of data sites and evaluation points are employed. In this paper an enhanced version of the method is proposed improving the accuracy and the efficiency by using a HPC environment. Our implementation exploits the processing power of GPUs for the basic computational kernel resolution. The performance gain demonstrates the method to be accurate and suitable to deal with large sets of data.

10.1109/sitis.2017.79http://hdl.handle.net/10447/289031