6533b81ffe1ef96bd12788d0

RESEARCH PRODUCT

Heavy quark diffusion in an overoccupied gluon plasma

Jarkko PeuronKirill BoguslavskiTuomas LappiTuomas LappiAleksi KurkelaAleksi Kurkela

subject

QuarkNuclear and High Energy PhysicsNuclear Theorynucl-thhep-latFOS: Physical sciencesLattice QCDhiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)fysikk0103 physical sciencesHeavy Quark Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPlasmonParticle Physics - PhenomenologyPhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]010308 nuclear & particles physicsOscillationComputer Science::Information RetrievalHigh Energy Physics - Lattice (hep-lat)Particle Physics - Latticehep-phLattice QCDPlasmaInvariant (physics)GluonHigh Energy Physics - PhenomenologyQuantum electrodynamicsNuclear Physics - TheoryQuark–gluon plasmaQuark-Gluon Plasmalcsh:QC770-798

description

We extract the heavy-quark diffusion coefficient \kappa and the resulting momentum broadening in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth of , followed by linear growth with time due to Langevin-type dynamics and damped oscillations around this growth at the plasmon frequency. We show that these novel oscillations are not easily explained using perturbative techniques but result from an excess of gluons at low momenta. These oscillation are therefore a gauge invariant confirmation of the infrared enhancement we had previously observed in gauge-fixed correlation functions. We argue that the kinetic theory description of such systems becomes less reliable in the presence of this IR enhancement.

https://dx.doi.org/10.48550/arxiv.2005.02418