6533b81ffe1ef96bd1278fa0
RESEARCH PRODUCT
Stochastic Analysis of a Nonlocal Fractional Viscoelastic Bar Forced by Gaussian White Noise
Francesco Paolo PinnolaGiuseppe FaillaGioacchino Alottasubject
PhysicsNon local bar fractional viscoelasticity stochastic analysisDifferential equationStochastic processBar (music)Mechanical EngineeringMathematical analysisEquations of motion02 engineering and technologyWhite noise021001 nanoscience & nanotechnologyViscoelasticityStochastic partial differential equation020303 mechanical engineering & transportsClassical mechanics0203 mechanical engineeringSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologySafety Risk Reliability and QualitySafety ResearchNumerical partial differential equationsdescription
Recently, a displacement-based nonlocal bar model has been developed. The model is based on the assumption that nonlocal forces can be modeled as viscoelastic (VE) long-range interactions mutually exerted by nonadjacent bar segments due to their relative motion; the classical local stress resultants are also present in the model. A finite element (FE) formulation with closed-form expressions of the elastic and viscoelastic matrices has also been obtained. Specifically, Caputo's fractional derivative has been used in order to model viscoelastic long-range interaction. The static and quasi-static response has been already investigated. This work investigates the stochastic response of the nonlocal fractional viscoelastic bar introduced in previous papers, discretized with the finite element method (FEM), forced by a Gaussian white noise. Since the bar is forced by a Gaussian white noise, dynamical effects cannot be neglected. The system of coupled fractional differential equations ruling the bar motion can be decoupled only by means of the fractional order state variable expansion. It is shown that following this approach Monte Carlo simulation can be performed very efficiently. For simplicity, here the work is limited to the axial response, but can be easily extended to transverse motion.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-12 | ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg |