6533b820fe1ef96bd1279161
RESEARCH PRODUCT
Epigenetic mutations can both help and hinder adaptive evolution.
Sinéad CollinsIlkka KronholmIlkka Kronholmsubject
0301 basic medicinePopulationAdaptation BiologicaladaptationBiologyEpigenesis Genetic03 medical and health sciencesevolutionGeneticsComputer SimulationEpigeneticseducationEcology Evolution Behavior and SystematicsGeneticseducation.field_of_studyFisher's geometric modelNatural selectionepigeneticsModels Geneticta1184Biological Evolution030104 developmental biologyPhenotypeEvolutionary biologyFisher's geometric modelMutationta1181genetic assimilationFitness effectsGenetic FitnessAdaptationGenetic assimilationAdaptive evolutiondescription
Epigenetic variation is being integrated into our understanding of adaptation, yet we lack models on how epigenetic mutations affect evolution that includes de novo genetic change. We model the effects of epigenetic mutations on the dynamics and endpoints of adaptive walks—a process where a series of beneficial mutations move a population towards a fitness optimum. We use an individual-based model of an asexual population, where mutational effects are drawn from Fisher's geometric model. We find cases where epigenetic mutations speed adaptation or result in populations with higher fitness. However, we also find cases where they slow adaptation or result in populations with lower fitness. The effect of epigenetic mutations on adaptive walks depends crucially on their stability and fitness effects relative to genetic mutations, with small-effect epigenetic mutations generally speeding adaptation, and epigenetic mutations with the same fitness effects as genetic mutations slowing adaptation. Our work reveals a complex relationship between epigenetic mutations and natural selection and highlights the need for empirical data.
year | journal | country | edition | language |
---|---|---|---|---|
2015-07-30 | Molecular ecology |