6533b820fe1ef96bd1279168
RESEARCH PRODUCT
Crowdsourced analysis of fungal growth and branching on microfluidic platforms
Shiv D. KaleJesús F. PeñaIlkka KronholmBrian LovettJason E. StajichAlex HopkeAlex HopkeDerreck Carter-houseSophie AltamiranoDaniel IrimiaDaniel IrimiaKevin MccluskeyMichelle MomanyHiral ShahMartin J. EganPaul GueretteBryan R. CoadEdyta SzewczykAlex MelaFelix EllettDavid N. Breslauersubject
Aspergillus NidulansHyphal growthMicrofluidicsYeast and Fungal ModelsmikrofluidistiikkaPathology and Laboratory MedicineBranching (linguistics)Microbial PhysiologyMedicine and Health SciencesBiological Phenomenamedia_commonFungal Pathogensmicrofluidic platformsMultidisciplinaryOrganic CompoundsQMonosaccharidesRMicrobial Growth and DevelopmentEukaryotaMicrofluidic Analytical TechniquesChemistryAspergillusAspergillus FumigatusExperimental Organism SystemsFungal MoldsMedical MicrobiologyPhysical SciencesMedicineEngineering and TechnologyCrowdsourcingcrowdsourcingFluidicsPathogenssienetBiological systemResearch ArticlesienirihmastotFungal GrowthFungal growthGeneral Science & TechnologySciencemedia_common.quotation_subjectCarbohydratesHyphaeMycologyBiologyResearch and Analysis Methodsfungal growthkasvuMicrobiologyCompetition (biology)AscomycotaSpecies SpecificitybranchingMicrobial PathogensBasidiomycotaOrganic ChemistryfungiOrganismsChemical CompoundsFungiSustained growthBiology and Life SciencesCollective workYeastGlucosejoukkoistaminenAnimal StudiesLinear growthDevelopmental BiologyFungal hyphaedescription
Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the “Fungus Olympics.” The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 μm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | PLOS ONE |