6533b820fe1ef96bd12798e4
RESEARCH PRODUCT
The Dreaming Variational Autoencoder for Reinforcement Learning Environments
Morten GoodwinPer-arne AndersenOle-christopher Granmosubject
Memory managementArtificial neural networkComputer sciencebusiness.industryBenchmark (computing)Feature (machine learning)Reinforcement learningArtificial intelligenceMarkov decision processbusinessAutoencoderGenerative grammardescription
Reinforcement learning has shown great potential in generalizing over raw sensory data using only a single neural network for value optimization. There are several challenges in the current state-of-the-art reinforcement learning algorithms that prevent them from converging towards the global optima. It is likely that the solution to these problems lies in short- and long-term planning, exploration and memory management for reinforcement learning algorithms. Games are often used to benchmark reinforcement learning algorithms as they provide a flexible, reproducible, and easy to control environment. Regardless, few games feature a state-space where results in exploration, memory, and planning are easily perceived. This paper presents The Dreaming Variational Autoencoder (DVAE), a neural network based generative modeling architecture for exploration in environments with sparse feedback. We further present Deep Maze, a novel and flexible maze engine that challenges DVAE in partial and fully-observable state-spaces, long-horizon tasks, and deterministic and stochastic problems. We show initial findings and encourage further work in reinforcement learning driven by generative exploration.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |