6533b820fe1ef96bd1279a69

RESEARCH PRODUCT

From capillary condensation to interface localization transitions in colloid-polymer mixtures confined in thin-film geometry.

Richard L. C. VinkAndres De VirgiliisAndres De VirgiliisKurt BinderJürgen Horbach

subject

Phase transitionCapillary waveMonte Carlo methodFOS: Physical sciencesMonte-Carlo simulationCondensed Matter - Soft Condensed Mattercomplex mixtures01 natural sciences010305 fluids & plasmasColloiddemixing transition in confinement0103 physical sciences010306 general physicsScalingPhysicsCondensed Matter - Materials ScienceCondensed matter physicsCapillary condensationdigestive oral and skin physiologyMaterials Science (cond-mat.mtrl-sci)3. Good healthUniversality (dynamical systems)Condensed Matter::Soft Condensed Mattercolloid-polymer mixturesSoft Condensed Matter (cond-mat.soft)Ising model

description

Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer to colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: while the left wall has a hard-core repulsion for both polymers and colloids, at the right wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation-type to interface localization-type. The critical behavior of these transitions is discussed, as well as the colloid and polymer density profiles across the film in the various phases, and the correlation of interfacial fluctuations in the direction parallel to the confining walls. The experimental observability of these phenomena also is briefly discussed.

10.1103/physreve.78.041604https://pubmed.ncbi.nlm.nih.gov/18999436