6533b820fe1ef96bd1279c8a
RESEARCH PRODUCT
Hydrogen bonding in dimers of tritolyl and tritosylurea derivatives of triphenylmethanes.
Iris ThondorfVolker BöhmerDieter SchollmeyerValentyn RudzevichYuliya Rudzevichsubject
Models MolecularMagnetic Resonance SpectroscopyDimerLow-barrier hydrogen bondMolecular Conformationchemistry.chemical_elementCrystal structurePhotochemistryCrystallography X-RayBiochemistryOxygenchemistry.chemical_compoundMolecular dynamicsUreaComputer SimulationPhysical and Theoretical ChemistryChloroformHydrogen bondOrganic ChemistryHydrogen BondingTrityl CompoundsCrystallographychemistryUreaThermodynamicsDimerizationdescription
The crystal structure of the homodimer formed by the tritolylurea 3a proves the existence of a belt of six bifurcated hydrogen bonds between both NH and the O=C groups of the adjacent urea residues. For the tritosylurea 3b, four additional three-center hydrogen bonds, also involving the SO2 oxygen, are found in the crystalline state. Molecular dynamics simulations in a chloroform box confirm these patterns of the hydrogen bonds and the resulting elongation of the dimer 3b. 3b in comparison to 3a x 3a. The calculated complexation energies for the three dimeric combinations are nearly identical in agreement with the simultaneous formation of heterodimer 3a x 3b in a mixture of 3a and 3b.
year | journal | country | edition | language |
---|---|---|---|---|
2006-10-19 | Organicbiomolecular chemistry |