6533b820fe1ef96bd1279cb4
RESEARCH PRODUCT
The SESAMO early warning system for rainfall-triggered landslides
Elisa ArnoneLeonardo NotoDario PumoAntonio FrancipaneG. La LoggiaF Lo ContiFrancesco ViolaP. Bitontosubject
Artificial neural networkEngineeringAtmospheric Science0208 environmental biotechnologyInteroperabilityReal-time computingArtificial neural network; Early warning; Integrated information system; MEMS tilt sensor; Meteorological micro radar; Monitoring system; Atmospheric Science; Geotechnical Engineering and Engineering Geology02 engineering and technologyMEMS tilt sensorSlope stabilityInformation systemIntegrated information systemSimulationMeteorological micro radarCivil and Structural EngineeringWater Science and TechnologyEarly warningWarning systembusiness.industryLandslideGeotechnical Engineering and Engineering Geology020801 environmental engineeringReal-time locating systemEarly warning systemMonitoring systembusinessWireless sensor networkdescription
The development of Web-based information systems coupled with advanced monitoring systems could prove to be extremely useful in landslide risk management and mitigation. A new frontier in the field of rainfall-triggered landslides (RTLs) lies in the real-time modelling of the relationship between rainfall and slope stability; this requires an intensive monitoring of some key parameters that could be achieved through the use of modern and often low-cost technologies. This work describes an integrated information system for early warning of RTLs that has been deployed and tested, in a prototypal form, for an Italian pilot site. The core of the proposed system is a wireless sensor network collecting meteorological, hydrological and geotechnical data. Data provided by different sensors and transmitted to a Web-based platform are used by an opportunely designed artificial neural network performing a stability analysis in near real-time or in forecast modality. The system is able to predict whether and when landslides could occur, providing early warnings of potential slope failures. System infrastructure, designed on three interacting levels, encompasses a sensing level, integrating different Web-based sensors, a processing level, using Web standard interoperability services and specifically implemented algorithms, and, finally, a warning level, providing warning information through Web technologies.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |