6533b820fe1ef96bd1279cc4

RESEARCH PRODUCT

Intracellular fluoride influences TASK mediated currents in human T cells.

Manuela CerinaSven G. MeuthThomas BuddeStefan BittnerAlexander M. Herrmann

subject

0301 basic medicinePatch-Clamp TechniquesTime FactorsPotassium CompoundsT-LymphocytesImmunologyMagnesium ChlorideMembrane Potentials03 medical and health scienceschemistry.chemical_compoundFluorides0302 clinical medicinePotassium Channels Tandem Pore DomainPotassium Channel BlockersImmunology and AllergyHumansCells CulturedKv1.3 Potassium ChannelActivator (genetics)ChemistryPipetteAnandamideElectrophysiology030104 developmental biologyMembraneBiophysicsCell activationFluorideIntracellular030215 immunology

description

The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studies. While fluoride is frequently used to stabilize electrophysiological recordings, it is known as G-protein activator and to influence the intracellular Ca2+ concentration, which are mechanisms known to modulate TASK channel functioning. Therefore, we systemically addressed different fluoride- and chloride-based pipette solutions in whole-cell patch-clamp experiments in human T cells and used specific blockers to identify membrane currents carried by TASK and Kv1.3 channels. We found that fluoride increased the decay time constant of K+ outward currents, reduced the degree of the sustained current component and diminished the effect of the specific TASK channels blocker A293. These findings indicate that the use of fluoride-based pipette solutions may hinder the identification of a functional TASK channel component in electrophysiological experiments.

10.1016/j.jim.2020.112875https://pubmed.ncbi.nlm.nih.gov/33031794