6533b820fe1ef96bd127a36f

RESEARCH PRODUCT

Spaces of typen on partially ordered sets

Stefan E. Schmidt

subject

CombinatoricsDifferential geometryIncidence geometryDistributivityGeometry and TopologyAlgebraic geometryPartially ordered setLattice (discrete subgroup)Space (mathematics)MathematicsProjective geometry

description

This paper contains a generalized approach to incidence geometry on partially ordered sets. A difference to the usual geometrical concepts is that points may have different size. Our main result states that a large class of spaces allows lattice theoretic characterizations. Especially, a generalized version of the Veblen-Young axiom of projective geometry has a lattice theoretic equivalent, called then-generation property (which is a generalization of the ‘Verbindungssatz’). Modularity and distributivity of a lattice of subspaces are reflected in the underlying space. Finally we give specializations and examples.

https://doi.org/10.1007/bf02424316