6533b820fe1ef96bd127a45f
RESEARCH PRODUCT
pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer
Stefan BiesterfeldA KreftRainer WiewrodtA ZitzerPatricia S. HähnelPatricia S. HähnelV BeyerMartin SchulerMartin SchulerS HoffarthS Hoffarthsubject
Lung NeoplasmsTransplantation HeterologousAntineoplastic AgentsApoptosisMice SCIDBiologyMalignant transformationMiceProstate cancerIn vivoCarcinoma Non-Small-Cell LungmedicineAnimalsHumansLung cancerMolecular BiologyIntracellular Signaling Peptides and ProteinsNuclear ProteinsRNA-Binding ProteinsCancerCell Biologymedicine.diseaseCell biologyEnzyme ActivationApoptosisCaspasesCancer cellCancer researchSignal transductionNeoplasm Transplantationdescription
During malignant transformation, cancer cells have to evade cell-intrinsic tumor suppressor mechanisms including apoptosis, thus acquiring a phenotype that is relatively resistant to clinically applied anticancer therapies. Molecular characterization of apoptotic signal transduction defects may help to identify prognostic markers and to develop novel therapeutic strategies. To this end we have undertaken functional analyses of drug-induced apoptosis in human non-small cell-lung cancer (NSCLC) cells. We found that primary drug resistance correlated with defects in apoptosome-dependent caspase activation in vitro. While cytochrome c-induced apoptosome formation was maintained, the subsequent activation of caspase-9 and -3 was abolished in resistant NSCLC. The addition of recombinant pp32/putative human HLA class II-associated protein (pp32/PHAPI), described as a putative tumor suppressor in prostate cancer, successfully restored defective cytochrome c-induced caspase activation in vitro. Conditional expression of pp32/PHAPI sensitized NSCLC cells to apoptosis in vitro and in a murine tumor model in vivo. Immunohistochemical analyses of tumor samples from NSCLC patients revealed that the expression of pp32/PHAPI correlated with an improved outcome following chemotherapy. These results identify pp32/PHAPI as regulator of the apoptosis response of cancer cells in vitro and in vivo, and as a predictor of survival following chemotherapy for advanced NSCLC.
year | journal | country | edition | language |
---|---|---|---|---|
2007-10-27 | Cell Death & Differentiation |