6533b820fe1ef96bd127a54a
RESEARCH PRODUCT
Synthesis, crystal structures and magnetic properties of single and double cyanide-bridged bimetallic Fe2(III)Cu(II) zigzag chains.
Luminita Marilena TomaJoan CanoRosa CarrascoCatalina Ruiz-pérezMiguel JulveFernando S. DelgadoFrancesc Lloretsubject
Stereochemistrychemistry.chemical_elementBridging ligandCrystal structureCopperlaw.inventionInorganic ChemistryCrystallographychemistrylawMoleculeDensity functional theoryCrystallizationBimetallic stripCritical fielddescription
The bimetallic complexes [[Fe(III)(phen)(CN)4]2Cu(II)(H2O)2].4H2O (1), [[Fe(III)(phen)(CN)4]2Cu(II)].H2O (2) and [[Fe(III)(bipy)(CN)4]2Cu(II)].2H2O (3) and [[Fe(III)(bipy)(CN)4]2Cu(II)(H2O)2].4H2O (4) (phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine) have been prepared and the structures of 1-3 determined by X-ray diffraction. The structure of 1 is made up of neutral cyanide-bridged Fe(III)-Cu(II) zigzag chains of formula [[Fe(III)(phen)(CN)4]2Cu(II)(H2O)2] and uncoordinated water molecules with the [Fe(phen)(CN)4]- entity acting as a bis-monodentate bridging ligand toward two trans-diaquacopper(II) units through two of its four cyanide groups in cis positions. The structure of 2 can be viewed as the condensation of two chains of 1 connected through single cyanide-bridged Fe(III)-Cu(II) pairs after removal of the two axially coordinated water molecules of the copper atom. The structure of 3 is like that of 2, the main differences being the occurrence of bipy (phen in 2) and two (one in 2) crystallization water molecules. The crystals of 4 diffract poorly but the analysis of the limited set of diffraction data shows a chain structure like that of 1 the most important difference being the fact that elongation axis at the copper atom is defined by the two trans coordinated water molecules. 1 behaves as a ferromagnetic Fe(III)2Cu(II) trinuclear system. A metamagnetic-like behavior is observed for 2 and 3, the value of the critical field (Hc) being ca. 1100 (2) and 900 Oe (3). For HHc the ferromagnetic Fe(III)2Cu(II) chains exhibit frequency dependence of the out-of-phase ac susceptibility signal at T4.0 K. The magnetic behavior of 4 corresponds to that of a ferromagnetically coupled chain of low spin iron(III) and copper(II) ions with frequency dependence of the out-of-phase susceptibility at T3.0 K. Theoretical calculations using methods based on density functional theory (DFT) have been employed to analyze and substantiate the exchange pathways in this family of complexes.
year | journal | country | edition | language |
---|---|---|---|---|
2004-09-07 | Dalton transactions (Cambridge, England : 2003) |