6533b820fe1ef96bd127a5ae
RESEARCH PRODUCT
EPR on Radiation-Induced Defects in SiO2
Antonino AlessiRudolf I. MashkovtsevSimonpietro AgnelloYuanming PanGianpiero Buscarinosubject
Electron nuclear double resonanceMaterials sciencePulse (signal processing)Settore FIS/01 - Fisica SperimentaleRadiation inducedOxygen vacancylaw.inventionNuclear magnetic resonancelawSingle-crystal and glass EPR multi-frequency EPR pulse ENDOR pulse ESEEM coordinate system oxygen vacancy silicon vacancy impurity defects electronic structures dynamic propertiesAmorphous silicaElectron paramagnetic resonanceSpectroscopyEnvelope (waves)description
Continuous-wave electron paramagnetic resonance (EPR) spectroscopy has been the technique of choice for the studies of radiation-induced defects in silica (SiO2) for 60 years, and has recently been expanded to include more sophisticated techniques such as high-frequency EPR, pulse electron nuclear double resonance (ENDOR), and pulse electron spin echo envelope modulation (ESEEM) spectroscopy. Structural models of radiation-induced defects obtained from single-crystal EPR analyses of crystalline SiO2 (alfa-quartz) are often applicable to their respective analogues in amorphous silica (a-SiO2), although significant differences are common.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 |