6533b820fe1ef96bd127a654
RESEARCH PRODUCT
An overdetermined problem for the anisotropic capacity
Giulio CiraoloChiara BianchiniPaolo Salanisubject
Laplace's equation35A2335B65Applied Mathematics010102 general mathematicsMathematical analysisAnalysi31B15Minkowski inequality01 natural sciences010101 applied mathematicsOverdetermined systemEuclidean distanceMathematics - Analysis of PDEs35J25Norm (mathematics)FOS: Mathematics0101 mathematicsAnisotropyLaplace operatorAnalysisDual normMathematicsAnalysis of PDEs (math.AP)description
We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in \({\mathbb {R}}^{N}\), establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm \(H_0\)).
year | journal | country | edition | language |
---|---|---|---|---|
2015-09-25 |