6533b820fe1ef96bd127a68f

RESEARCH PRODUCT

Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt

Patrick GervaisKarine PerninJ. De ConinckNathalie CayotRémy CachonElisabeth GuichardF. Martin

subject

[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesStreptococcus thermophilusOXIDOREDUCTION POTENTIALBACTERIAL METABOLISMVOLATILE COMPOUNDchemistry.chemical_compound0404 agricultural biotechnologyLACTIC ACID BACTERIALactobacillusGeneticsAnimalsStreptococcus thermophilusLactic AcidFood science[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesAromabiology0402 animal and dairy scienceAcetaldehydefood and beverages04 agricultural and veterinary sciencesYogurtbiology.organism_classificationDietary Fats040401 food science040201 dairy & animal scienceDiacetylLactic acidSmellLactobacillusBiochemistrychemistryFermentationFood MicrobiologyAnimal Science and ZoologyFermentationOxidation-ReductionBacteriaFood Science

description

 ; The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation.

https://hal.archives-ouvertes.fr/hal-00939775