Search results for "Fermentation"

showing 10 items of 746 documents

Lowering histamine formation in a red Ribera del Duero wine (Spain) by using an indigenous O. oeni strain as a malolactic starter

2016

This study demonstrates for the first time that a non-commercial selected autochthonous O. oeni strain has been used to conduct malolactic fermentation (MLF) while lowering histamine formation in the same winery. Lactic acid bacteria (LAB) were isolated from 13 vats before and after spontaneous MLF at the Pago de Carraovejas winery from the Ribera del Duero region (Spain). Only O. oeni were present, typed and characterized, and both histamine producer and non-producers existed. From the non-producers, one strain was selected to become a starter according to its genetic profile, prevalence in the different wines in the winery, resistance to alcoholic degree, resistance to high polyphenolic c…

0106 biological sciences0301 basic medicine030106 microbiologyMalatesWine01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundStarterMalate DehydrogenaseRNA Ribosomal 16S010608 biotechnologyMalolactic fermentationLactic AcidFood scienceOenococcusWinebiologyStrain (chemistry)food and beveragesGeneral Medicinebiology.organism_classificationWineryRandom Amplified Polymorphic DNA TechniqueLactic acidchemistrySpainFermentationFood MicrobiologyHistamineBacteriaHistamineFood ScienceInternational Journal of Food Microbiology
researchProduct

Changes in freshwater sediment microbial populations during fermentation of crude glycerol

2020

This work was supported by the Latvian Council of Science , project NN-CARMA, project No. lzp-2018/1-0194.

0106 biological sciences0301 basic medicineFirmicutesMicroorganismlcsh:BiotechnologyMicroorganismsFirmicutes01 natural sciencesApplied Microbiology and BiotechnologyActinobacteriaButyric acid03 medical and health scienceschemistry.chemical_compound010608 biotechnologylcsh:TP248.13-248.65:NATURAL SCIENCES:Physics [Research Subject Categories]GlycerolFood sciencelcsh:QH301-705.5ClostridiumCrude glycerolbiologyFreshwater sediment microbial populations fermentationbiology.organism_classification6. Clean waterActinobacteriaqPCR030104 developmental biologychemistryMicrobial population biologylcsh:Biology (General)Biodiesel productionFermentationAnaerobic fermentationGammaproteobacteriaBiotechnologyElectronic Journal of Biotechnology
researchProduct

Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

2015

In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firm…

0106 biological sciences0301 basic medicineFirmicutesSilageSwineClostridium cochleariumMolecular Sequence DataBioengineeringBacillusReal-Time Polymerase Chain Reaction01 natural sciencesApplied Microbiology and BiotechnologyDNA RibosomalZea maysMicrobiologyButyric acid03 medical and health sciencesAcetic acidchemistry.chemical_compoundBioreactors010608 biotechnologyRNA Ribosomal 16SAnimalsThermoanaerobacterium thermosaccharolyticumPhylogenyAcetic AcidDNA PrimersClostridiumSilagebiologyBacteriaBase SequenceGeneral Medicinebiology.organism_classificationLactic acidManure030104 developmental biologychemistryBiofuelsFermentationButyric AcidCattlePropionatesBacteriaGenome BacterialBiotechnologyJournal of biotechnology
researchProduct

Recent advancements in lactic acid production - a review.

2017

Abstract Lactic acid, as an organic acid, has essential roles in industrial applications ranging from the food industry to life-sciences. Conventional fermentation methods have been well-studied since late 18th century, but are unable to achieve consumers' expectations regarding both quality and quantity. Therefore, novel technological developments of lactic acid production to increase yield and decrease over-all cost have become the primary goal. Genetic and metabolic engineering are great tools to overcome problems associated with product inhibition, undesired by-product formation, the negative effect of extreme culture conditions and most importantly inefficient use of expensive substrat…

0106 biological sciences0301 basic medicineFood industryGenotype01 natural sciencesMetabolic engineering03 medical and health scienceschemistry.chemical_compoundIndustrial MicrobiologyBioreactors010608 biotechnologyProduction (economics)Lactic AcidProductivitychemistry.chemical_classificationBacteriabusiness.industryEquipment DesignLactic acid030104 developmental biologyPhenotypechemistryFermentationFermentationBiochemical engineeringbusinessGenetic EngineeringFood ScienceOrganic acidFood research international (Ottawa, Ont.)
researchProduct

Advantages of Using Blend Cultures of Native L. plantarum and O. oeni Strains to Induce Malolactic Fermentation of Patagonian Malbec Wine

2018

The malolactic fermentation (MLF) of Patagonian Malbec wine inoculated with blend cultures of selected native strains of Lactobacillus plantarum and Oenococcus oeni was monitored during 14 days, analyzing the strains ability to modify the content of some organic acids and to change the volatile compounds profile. The performance of the LAB strains was tested as single and blends cultures of both species. An implantation control by RAPD PCR was also carried out to differentiate among indigenous and inoculated strains. The L. plantarum strains UNQLp11 and UNQLp155 and the O. oeni strain UNQOe73.2 were able to remain viable during the monitoring time of MLF, whereas the O. oeni strain UNQOe31b…

0106 biological sciences0301 basic medicineMicrobiology (medical)030106 microbiologylcsh:QR1-50201 natural sciencesMicrobiologylcsh:Microbiology03 medical and health sciences010608 biotechnologyL-malic acidMalolactic fermentationFood scienceOenococcus oeniWinePatagonian Malbec wineflavorbiologyStrain (chemistry)ChemistryInoculationfood and beveragesbiology.organism_classificationFlavorRAPDL. plantarumO. oeniLactobacillus plantarumFrontiers in Microbiology
researchProduct

Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties.

2018

We report the first polyphasic characterization of native Saccharomyces cerevisiae in order to select candidate strains for the design of starter cultures tailored for Apulian sparkling wines obtained from local grape variety. In addition, it is the first survey in our region that propose the selection of autochthonous starter cultures for sparkling wine i) including a preliminary tailored genotypic and technological screening, and ii) monitoring analytical contribution during secondary fermentation in terms of volatile compounds (VOCs). Furthermore, we exploit the potential contribute of autochthonous cultures throughout the productive chain, including the possible improvement of base wine…

0106 biological sciences0301 basic medicineSparkling wine production030106 microbiologyWineSaccharomyces cerevisiaeAutochthonous grape varietiesrr01 natural sciencesMicrobiologyInterdelta03 medical and health sciencesStarterSparkling wine010608 biotechnologyVitisFood scienceSelection (genetic algorithm)Fermentation in winemakingWineindigenous yeastsbiologyautochthonous starter culturesfood and beveragesGeneral Medicinebiology.organism_classificationggYeastFermentationFood MicrobiologyFermentationFood ScienceBiotechnologyInternational journal of food microbiology
researchProduct

Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products

2021

Biosurfactants are a microbially synthesized alternative to synthetic surfactants, one of the most important bulk chemicals. Some yeast species are proven to be exceptional biosurfactant producers, while others are emerging producers. A set of factors affects the type, amount, and properties of the biosurfactant produced, as well as the environmental impact and costs of biosurfactant’s production. Exploring waste cooking oil as a substrate for biosurfactants’ production serves as an effective cost-cutting strategy, yet it has some limitations. This review explores the existing knowledge on utilizing waste cooking oil as a feedstock to produce glycolipid biosurfactants by yeast. The review f…

0106 biological sciences0301 basic medicineTP500-660Cooking oilChemistryCommodity chemicalsFermentation industries. Beverages. Alcoholcircular economyPlant Sciencemicrobial surfactantsSubstrate (biology)Raw materialPulp and paper industry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Yeastwaste valorization03 medical and health sciences030104 developmental biologyGlycolipidused cooking oil010608 biotechnologynonconventional yeastsFood ScienceFermentation
researchProduct

Use of fortified pied de cuve as an innovative method to start spontaneous alcoholic fermentation for red winemaking

2015

Background and Aims Some wineries, in order to promote the growth of yeasts able to ferment grape musts, traditionally produce wines using the ‘pied de cuve’ method. The aim of the present work was to study the performance of fortified pied de cuve (FPdC) prepared by addition of wine. Method and Results Two FPdCs were prepared with the addition of wine at 1.5 and 3% (v/v) of ethanol to the musts and allowed to spontaneously ferment. The FPdCs were then added to fresh bulk musts in order to accelerate the spontaneous alcoholic fermentation (AF). Interestingly, several Saccharomyces cerevisiae strains isolated during the pied de cuve preparation were detected at the highest concentration thro…

0106 biological sciences0301 basic medicineWineEthanol030106 microbiologyfood and beveragesSensory profileHorticultureEthanol fermentationIsoamyl alcohol01 natural sciences03 medical and health scienceschemistry.chemical_compoundchemistry010608 biotechnologyComposition (visual arts)Ethyl lactateFood scienceWinemakingAustralian Journal of Grape and Wine Research
researchProduct

Influence of yeast strains on managing wine acidity using Lactobacillus plantarum

2018

Abstract Lactobacillus plantarum has been used for deacidifying wines through malolactic fermentation (MLF), and more recently for acidifying them. The species Oenococcus oeni is mainly responsible for MLF in wines at a pH below 3.5. However, the Lactobacillus and Pediococcus species can carry out this reaction in wines at a higher pH. MLF generally begins once yeasts have completed alcoholic fermentation, but nowadays some winemakers prefer carrying out MLF simultaneously to alcoholic fermentation. The advantages of this strategy are shorter times in which to complete wine vinification and better wine color stabilization. Lactobacillus plantarum is preferred to O. oeni for performing early…

0106 biological sciences0301 basic medicineWinebiologyChemistry030106 microbiologyfood and beveragesEthanol fermentationbiology.organism_classification01 natural sciencesYeastWine color03 medical and health sciences010608 biotechnologyMalolactic fermentationFermentationFood scienceLactobacillus plantarumFood ScienceBiotechnologyOenococcus oeniFood Control
researchProduct

Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction

2018

This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerev…

0106 biological sciences0301 basic medicineXyloseFurfural01 natural sciencesApplied Microbiology and BiotechnologyHydrolysateIndustrial Microbiology03 medical and health scienceschemistry.chemical_compoundAcetic acidBioenergy and BiofuelsYeasts010608 biotechnologyEnzymatic hydrolysisLigninFuraldehydeFood scienceCelluloseTriticumEthanolHydrolysisWheat strawGeneral MedicineStrawLipids030104 developmental biologychemistryBiofuelsFermentationFurfural productionBiodieselLignocelluloseBiotechnologyApplied Microbiology and Biotechnology
researchProduct