6533b821fe1ef96bd127ac19

RESEARCH PRODUCT

An Introduction to Kernel Methods

Gustavo Camps-vallsJosé Luis Rojo-álvarezManel Martínez-ramón

subject

Mathematical optimizationbusiness.industryMachine learningcomputer.software_genreKernel principal component analysisKernel methodVariable kernel density estimationPolynomial kernelKernel embedding of distributionsKernel (statistics)Radial basis function kernelKernel smootherArtificial intelligencebusinesscomputerMathematics

description

Machine learning has experienced a great advance in the eighties and nineties due to the active research in artificial neural networks and adaptive systems. These tools have demonstrated good results in many real applications, since neither a priori knowledge about the distribution of the available data nor the relationships among the independent variables should be necessarily assumed. Overfitting due to reduced training data sets is controlled by means of a regularized functional which minimizes the complexity of the machine. Working with high dimensional input spaces is no longer a problem thanks to the use of kernel methods. Such methods also provide us with new ways to interpret the classification or estimation results. Kernel methods are emerging and innovative techniques that are based on first mapping the data from the original input feature space to a kernel feature space of higher dimensionality, and then solving a linear problem in that space. These methods allow us to geometrically design (and interpret) learning algorithms in the kernel space (which is nonlinearly related to the input space), thus combining statistics and geometry in an effective way. This theoretical elegance is also matched by their practical performance.

https://doi.org/10.4018/978-1-60566-010-3.ch170