6533b821fe1ef96bd127ad9a

RESEARCH PRODUCT

On achieving near-optimal “Anti-Bayesian” Order Statistics-Based classification fora asymmetric exponential distributions

A. ThomasB. John Oommen

subject

Uniform distribution (continuous)Cumulative distribution functionBayesian probabilityOrder statistic02 engineering and technology01 natural sciencesVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Combinatorics010104 statistics & probabilityBayes' theoremExponential familyclassification using Order Statistics (OS)VDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 4250202 electrical engineering electronic engineering information engineeringApplied mathematics020201 artificial intelligence & image processing0101 mathematicsNatural exponential familymoments of OSBeta distributionMathematics

description

Published version of a Chapter in the book: Computer Analysis of Images and Patterns. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-40261-6_44 This paper considers the use of Order Statistics (OS) in the theory of Pattern Recognition (PR). The pioneering work on using OS for classification was presented in [1] for the Uniform distribution, where it was shown that optimal PR can be achieved in a counter-intuitive manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample to a few samples distant from the mean - which is distinct from the optimal Bayesian paradigm. In [2], we showed that the results could be extended for a few symmetric distributions within the exponential family. In this paper, we attempt to extend these results significantly by considering asymmetric distributions within the exponential family, for some of which even the closed form expressions of the cumulative distribution functions are not available. These distributions include the Rayleigh, Gamma and certain Beta distributions. As in [1] and [2], the new scheme, referred to as Classification by Moments of Order Statistics (CMOS), attains an accuracy very close to the optimal Bayes’ bound, as has been shown both theoretically and by rigorous experimental testing.

10.1007/978-3-642-40261-6_44http://hdl.handle.net/11250/138016